Menu Close

Author: Tinku Tara

Question-21366

Question Number 21366 by Glorious Man last updated on 22/Sep/17 Answered by mrW1 last updated on 22/Sep/17 $$\left[\mathrm{ADF}\right]=\left[\mathrm{ABE}\right]=\mathrm{25}+\mathrm{70}=\mathrm{95} \\ $$$$\Rightarrow\left[\mathrm{EHG}\right]=\mathrm{95}−\mathrm{25}−\mathrm{55}=\mathrm{15} \\ $$$$\left[\mathrm{HGJB}\right]=\mathrm{2}×\mathrm{95}−\mathrm{15}−\mathrm{80}=\mathrm{95} \\ $$ Commented…

A-small-mass-rest-on-a-horizontal-plat-form-which-vibrates-vertically-in-simple-harmonic-motion-with-period-0-50s-Find-the-maximum-amplitude-of-the-motion-which-allow-which-allow-the-mass-to-remain-

Question Number 86895 by Rio Michael last updated on 01/Apr/20 $$\mathrm{A}\:\mathrm{small}\:\mathrm{mass}\:\mathrm{rest}\:\mathrm{on}\:\mathrm{a}\:\mathrm{horizontal}\:\mathrm{plat}\:\mathrm{form}\:\mathrm{which}\:\mathrm{vibrates}\: \\ $$$$\mathrm{vertically}\:\mathrm{in}\:\mathrm{simple}\:\mathrm{harmonic}\:\mathrm{motion}\:\mathrm{with}\:\mathrm{period}\:\mathrm{0}.\mathrm{50s}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{amplitude}\:\mathrm{of}\:\mathrm{the}\:\mathrm{motion}\:\mathrm{which}\:\mathrm{allow}\:\mathrm{which} \\ $$$$\mathrm{allow}\:\mathrm{the}\:\mathrm{mass}\:\mathrm{to}\:\mathrm{remain}\:\mathrm{in}\:\mathrm{contact}\:\mathrm{with}\:\mathrm{the}\:\mathrm{platform}\:\mathrm{throughout} \\ $$$$\mathrm{the}\:\mathrm{motion} \\ $$ Terms of Service Privacy…