Menu Close

Author: Tinku Tara

Let-z-1-z-2-z-3-be-complex-numbers-not-all-real-such-that-z-1-z-2-z-3-1-and-2-z-1-z-2-z-3-3z-1-z-2-z-3-R-Prove-that-max-arg-z-1-arg-z-2-arg-z-3-pi-6-Wher

Question Number 21294 by Tinkutara last updated on 19/Sep/17 $$\mathrm{Let}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{be}\:\mathrm{complex}\:\mathrm{numbers},\:\mathrm{not} \\ $$$$\mathrm{all}\:\mathrm{real},\:\mathrm{such}\:\mathrm{that}\:\mid{z}_{\mathrm{1}} \mid\:=\:\mid{z}_{\mathrm{2}} \mid\:=\:\mid{z}_{\mathrm{3}} \mid\:=\:\mathrm{1} \\ $$$$\mathrm{and}\:\mathrm{2}\left({z}_{\mathrm{1}} \:+\:{z}_{\mathrm{2}} \:+\:{z}_{\mathrm{3}} \right)\:−\:\mathrm{3}{z}_{\mathrm{1}} {z}_{\mathrm{2}} {z}_{\mathrm{3}}…

Let-n-be-an-even-positive-integer-such-that-n-2-is-odd-and-let-0-1-n-1-be-the-complex-roots-of-unity-of-order-n-Prove-that-k-0-n-1-a-b-k-2-a-n-2-b-n-2-2

Question Number 21293 by Tinkutara last updated on 19/Sep/17 $$\mathrm{Let}\:{n}\:\mathrm{be}\:\mathrm{an}\:\mathrm{even}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{such} \\ $$$$\mathrm{that}\:\frac{{n}}{\mathrm{2}}\:\mathrm{is}\:\mathrm{odd}\:\mathrm{and}\:\mathrm{let}\:\alpha_{\mathrm{0}} ,\:\alpha_{\mathrm{1}} ,\:….,\:\alpha_{{n}−\mathrm{1}} \:\mathrm{be} \\ $$$$\mathrm{the}\:\mathrm{complex}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity}\:\mathrm{of}\:\mathrm{order}\:{n}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\prod}}\left({a}\:+\:{b}\alpha_{{k}} ^{\mathrm{2}} \right)\:=\:\left({a}^{\frac{{n}}{\mathrm{2}}} \:+\:{b}^{\frac{{n}}{\mathrm{2}}} \right)^{\mathrm{2}}…

Let-a-b-Z-0-lt-a-lt-b-How-would-you-find-the-maximum-largest-prime-gap-in-a-b-Note-Prime-gaps-are-the-distance-between-consecutive-primes-e-g-7-and-11-has-a-prime-gap-4-p-k-P-p-x-p

Question Number 21292 by FilupS last updated on 19/Sep/17 $$\mathrm{Let}\:\:{a},{b}\in\mathbb{Z} \\ $$$$\mathrm{0}<{a}<{b} \\ $$$$\: \\ $$$$\mathrm{How}\:\mathrm{would}\:\mathrm{you}\:\mathrm{find}\:\mathrm{the}\:\mathrm{maximum}/ \\ $$$$\mathrm{largest}\:\mathrm{prime}\:\mathrm{gap}\:\mathrm{in}\:\left({a},\:{b}\right)? \\ $$$$ \\ $$$$\mathrm{Note}: \\ $$$$\mathrm{Prime}\:\mathrm{gaps}\:\mathrm{are}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{between} \\…

f-x-x-sin-1-x-if-0-lt-x-1-0-if-x-0-Show-that-f-is-continous-but-not-of-bounded-variation-

Question Number 152362 by Tawa11 last updated on 27/Aug/21 $$\mathrm{f}\left(\mathrm{x}\right)\:\:\:=\:\:\:\begin{cases}{\mathrm{x}\:\mathrm{sin}\:\frac{\mathrm{1}}{\mathrm{x}}\:,\:\:\:\:\:\:\:\:\:\:\mathrm{if}\:\:\:\:\:\mathrm{0}\:\:\:<\:\:\:\mathrm{x}\:\:\:\leqslant\:\:\:\mathrm{1}}\\{\:\:\:\:\:\:\mathrm{0}\:\:\:\:,\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{if}\:\:\:\mathrm{x}\:\:\:=\:\:\:\mathrm{0}}\end{cases} \\ $$$$\mathrm{Show}\:\mathrm{that}\:\:\:\mathrm{f}\:\:\:\mathrm{is}\:\mathrm{continous}\:\mathrm{but}\:\mathrm{not}\:\mathrm{of}\:\mathrm{bounded}\:\mathrm{variation} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com