Menu Close

Author: Tinku Tara

Let-f-x-x-1-x-2-x-3-then-find-the-value-of-k-for-which-f-x-k-has-1-no-solution-2-only-one-solution-3-two-solutions-of-same-sign-4-two-solutions-of-opposite-sign-

Question Number 21168 by Tinkutara last updated on 15/Sep/17 $$\mathrm{Let}\:{f}\left({x}\right)\:=\:\mid{x}\:−\:\mathrm{1}\mid\:+\:\mid{x}\:−\:\mathrm{2}\mid\:+\:\mid{x}\:−\:\mathrm{3}\mid, \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{k}\:\mathrm{for}\:\mathrm{which}\:{f}\left({x}\right) \\ $$$$=\:{k}\:\mathrm{has} \\ $$$$\mathrm{1}.\:\mathrm{no}\:\mathrm{solution} \\ $$$$\mathrm{2}.\:\mathrm{only}\:\mathrm{one}\:\mathrm{solution} \\ $$$$\mathrm{3}.\:\mathrm{two}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{same}\:\mathrm{sign} \\ $$$$\mathrm{4}.\:\mathrm{two}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{opposite}\:\mathrm{sign} \\ $$ Answered…

I-1-x-4-1-dx-

Question Number 86703 by lémùst last updated on 30/Mar/20 $${I}=\int\frac{\mathrm{1}}{{x}^{\mathrm{4}} +\mathrm{1}}{dx} \\ $$ Commented by john santu last updated on 30/Mar/20 $$\mathrm{x}^{\mathrm{4}} +\mathrm{1}\:=\:\left(\mathrm{x}^{\mathrm{2}} −\mathrm{i}\right)\left(\mathrm{x}^{\mathrm{2}} +\mathrm{i}\right)…

lim-x-1-a-n-1-n-for-a-lt-0-a-gt-0-

Question Number 152239 by Tawa11 last updated on 26/Aug/21 $$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\mathrm{1}\:\:+\:\:\mathrm{a}^{\mathrm{n}} \right)^{\frac{\mathrm{1}}{\mathrm{n}}} \:\:\:\:\:\:\:\:\:\:\left[\mathrm{for}\:\:\:\:\:\:\:\mathrm{a}\:\:<\:\:\mathrm{0},\:\:\:\:\:\:\:\:\:\:\mathrm{a}\:\:>\:\:\mathrm{0}\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

find-solution-4-sin-x-1-4-1-2-2-2-sin-x-1-0-in-x-0-2pi-

Question Number 86701 by john santu last updated on 30/Mar/20 $$\mathrm{find}\:\mathrm{solution}\: \\ $$$$\mathrm{4}^{\mathrm{sin}\:\mathrm{x}\:−\frac{\mathrm{1}}{\mathrm{4}}} \:−\:\frac{\mathrm{1}}{\mathrm{2}+\sqrt{\mathrm{2}}}\:.\mathrm{2}^{\mathrm{sin}\:\mathrm{x}} \:−\mathrm{1}\:=\:\mathrm{0}\: \\ $$$$\mathrm{in}\:\mathrm{x}\:\in\left[\:\mathrm{0},\mathrm{2}\pi\:\right]\: \\ $$ Commented by john santu last updated…

prove-n-N-a-b-C-2-a-2n-1-b-2n-1-k-o-2n-1-k-a-k-b-2n-k-

Question Number 21154 by youssoufab last updated on 14/Sep/17 $${prove}:\:\forall{n}\in\mathbb{N}^{\ast} ,\forall\left({a},{b}\right)\in\mathbb{C}^{\mathrm{2}} ,\:{a}^{\mathrm{2}{n}+\mathrm{1}} +{b}^{\mathrm{2}{n}+\mathrm{1}} = \\ $$$$\underset{{k}={o}} {\overset{\mathrm{2}{n}} {\sum}}\left(−\mathrm{1}\right)^{{k}} {a}^{{k}} {b}^{\mathrm{2}{n}−{k}} \\ $$ Commented by alex041103…

16-x-2-y-16-y-2-x-1-x-y-

Question Number 152226 by mathdanisur last updated on 26/Aug/21 $$\mathrm{16}^{\boldsymbol{\mathrm{x}}^{\mathrm{2}} +\boldsymbol{\mathrm{y}}} \:+\:\mathrm{16}^{\boldsymbol{\mathrm{y}}^{\mathrm{2}} +\boldsymbol{\mathrm{x}}} \:=\:\mathrm{1}\:\:\Rightarrow\:\:\mathrm{x};\mathrm{y}=? \\ $$ Commented by john_santu last updated on 26/Aug/21 $$\mathrm{x}=\mathrm{y}=−\frac{\mathrm{1}}{\mathrm{2}} \\…

Two-particles-of-mass-m-each-are-tied-at-the-ends-of-a-light-string-of-length-2a-The-whole-system-is-kept-on-a-frictionless-horizontal-surface-with-the-string-held-tight-so-that-each-mass-is-at-a-dis

Question Number 21150 by Tinkutara last updated on 14/Sep/17 $$\mathrm{Two}\:\mathrm{particles}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{each}\:\mathrm{are}\:\mathrm{tied} \\ $$$$\mathrm{at}\:\mathrm{the}\:\mathrm{ends}\:\mathrm{of}\:\mathrm{a}\:\mathrm{light}\:\mathrm{string}\:\mathrm{of}\:\mathrm{length}\:\mathrm{2}{a}. \\ $$$$\mathrm{The}\:\mathrm{whole}\:\mathrm{system}\:\mathrm{is}\:\mathrm{kept}\:\mathrm{on}\:\mathrm{a}\:\mathrm{frictionless} \\ $$$$\mathrm{horizontal}\:\mathrm{surface}\:\mathrm{with}\:\mathrm{the}\:\mathrm{string}\:\mathrm{held} \\ $$$$\mathrm{tight}\:\mathrm{so}\:\mathrm{that}\:\mathrm{each}\:\mathrm{mass}\:\mathrm{is}\:\mathrm{at}\:\mathrm{a}\:\mathrm{distance} \\ $$$$'{a}'\:\mathrm{from}\:\mathrm{the}\:\mathrm{center}\:{P}\:\left(\mathrm{as}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the}\right. \\ $$$$\left.\mathrm{figure}\right).\:\mathrm{Now},\:\mathrm{the}\:\mathrm{mid}-\mathrm{point}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{string}\:\mathrm{is}\:\mathrm{pulled}\:\mathrm{vertically}\:\mathrm{upwards}\:\mathrm{with} \\…

Find-the-compression-in-the-spring-if-the-system-shown-below-is-in-equilibrium-

Question Number 21148 by Tinkutara last updated on 14/Sep/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{compression}\:\mathrm{in}\:\mathrm{the}\:\mathrm{spring}\:\mathrm{if} \\ $$$$\mathrm{the}\:\mathrm{system}\:\mathrm{shown}\:\mathrm{below}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{equilibrium}. \\ $$ Commented by Tinkutara last updated on 14/Sep/17 Commented by…

Figure-shows-an-arrangement-of-blocks-pulley-and-strings-Strings-and-pulley-are-massless-and-frictionless-The-relation-between-acceleration-of-the-blocks-as-shown-in-the-figure-is-

Question Number 21145 by Tinkutara last updated on 14/Sep/17 $$\mathrm{Figure}\:\mathrm{shows}\:\mathrm{an}\:\mathrm{arrangement}\:\mathrm{of}\:\mathrm{blocks}, \\ $$$$\mathrm{pulley}\:\mathrm{and}\:\mathrm{strings}.\:\mathrm{Strings}\:\mathrm{and}\:\mathrm{pulley} \\ $$$$\mathrm{are}\:\mathrm{massless}\:\mathrm{and}\:\mathrm{frictionless}.\:\mathrm{The} \\ $$$$\mathrm{relation}\:\mathrm{between}\:\mathrm{acceleration}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{blocks}\:\mathrm{as}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{is} \\ $$ Commented by Tinkutara last updated…