Question Number 86416 by spdmp last updated on 28/Mar/20 $$\sqrt{\mathrm{8}=} \\ $$$$\left.\mathrm{68}\right] \\ $$$$ \\ $$ Commented by john santu last updated on 28/Mar/20 $$??\%\%…
Question Number 20881 by tawa tawa last updated on 05/Sep/17 Answered by mrW1 last updated on 06/Sep/17 $$\left(\mathrm{ax}+\mathrm{ay}\right)^{\mathrm{n}} =\mathrm{a}^{\mathrm{n}} \left(\mathrm{x}+\mathrm{y}\right)^{\mathrm{n}} \\ $$$$\mathrm{since}\:\mathrm{a}\:\mathrm{middle}\:\mathrm{term}\:\mathrm{exists},\:\mathrm{n}\:\mathrm{is}\:\mathrm{even}. \\ $$$$\mathrm{its}\:\mathrm{middle}\:\mathrm{term}\:\mathrm{is} \\…
Question Number 151954 by mnjuly1970 last updated on 24/Aug/21 $$ \\ $$$$\:\:\:\:{nice}…{calculus} \\ $$$$\: \\ $$$$\:\:\:\:\:\boldsymbol{\phi}\::=\:\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {x}^{\:\mathrm{3}} .\:{cot}\:\left({x}\:\right){dx}\:=\frac{{a}}{\mathrm{16}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{a}\::=? \\ $$$${m}.{n}… \\ $$…
Question Number 151948 by mathdanisur last updated on 24/Aug/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 151951 by mnjuly1970 last updated on 24/Aug/21 $$ \\ $$$$\:\:\:\:\:{nice}\:…\:{mathematics} \\ $$$$\:\:\:\:\:\:\mathrm{S}:=\:\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\:\zeta\:\left(\mathrm{2}{n}\:\right)}{{n}\:.\:\mathrm{16}^{\:{n}} }\:=\:?\:……\blacksquare \\ $$$$ \\ $$ Commented by Tawa11 last…
Question Number 20876 by ajfour last updated on 05/Sep/17 Commented by ajfour last updated on 05/Sep/17 $${Rod}\:{AB}\:{is}\:{initially}\:{on}\:{a}\:{tabletop}. \\ $$$${End}\:{a}\:{given}\:{only}\:{a}\:{little}\:{push}\:{to} \\ $$$${start}\:{the}\:{fall}\:{of}\:{the}\:{rod}\:{as}\:{it}\:{turns} \\ $$$${through}\:{end}\:{B}\:{where}\:{static}\:{friction} \\ $$$${coefficient}\:{is}\:{high}\:{enough}.…
Question Number 20873 by Joel577 last updated on 05/Sep/17 $$\int_{\mathrm{1}} ^{\mathrm{5}} \frac{{e}^{{x}} }{{x}^{\mathrm{2}} }\:{dx} \\ $$ Answered by alex041103 last updated on 08/Sep/17 $${First}\:{we}\:{apply}\:{integration}\:{by}\:{parts} \\…
Question Number 20872 by j.masanja06@gmail.com last updated on 05/Sep/17 $${if}\:\:{y}=\left[{xtan}^{−\mathrm{1}} {x}\right]−\left[\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\right] \\ $$$${show}\:{that}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{''} =\mathrm{1} \\ $$ Answered by sma3l2996 last updated on 05/Sep/17…
Question Number 151941 by john_santu last updated on 24/Aug/21 $$\mathrm{Find}\:\mathrm{solution}\:\mathrm{set}\:\mathrm{of}\:\mathrm{equation} \\ $$$$\:\mathrm{6cos}\:\mathrm{x}−\mathrm{8sin}\:\mathrm{x}=\mathrm{5}\sqrt{\mathrm{3}} \\ $$$$\:\mathrm{0}°\leqslant\mathrm{x}\leqslant\mathrm{360}° \\ $$ Answered by iloveisrael last updated on 24/Aug/21 $$\:\Leftrightarrow\:\mathrm{3cos}\:{x}−\mathrm{4sin}\:{x}\:=\:\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{2}} \\…
Question Number 86406 by mathmax by abdo last updated on 28/Mar/20 $${let}\:\:\overset{\rightarrow} {{u}}=\overset{\rightarrow} {{i}}−\overset{\rightarrow} {{j}}\:+\overset{\rightarrow} {{k}}\:{and}\:\overset{\rightarrow} {{v}}=\mathrm{2}\overset{\rightarrow} {{i}}+\overset{\rightarrow} {{j}}\:+\mathrm{3}\overset{\rightarrow} {{k}} \\ $$$$\left({o},{i},{j},{k}\right)\:{orthonormal} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:\:\mid\mid\overset{\rightarrow} {{u}}\mid\mid\:\:,\mid\mid\overset{\rightarrow}…