Menu Close

Author: Tinku Tara

Question-20823

Question Number 20823 by ANTARES_VY last updated on 04/Sep/17 Answered by ajfour last updated on 04/Sep/17 $$\mathrm{2}{y}+\mathrm{5}\left(\frac{{x}−\mathrm{9}}{\mathrm{2}}\right)=\mathrm{5} \\ $$$$\Rightarrow\:\:\:\:\:\:\:\:\:\:\mathrm{4}{y}+\mathrm{5}{x}=\mathrm{55}\:\:\:\:…\left({i}\right) \\ $$$$\left.\:\:\:{and}\:\:\:\mathrm{4}{x}−{y}=\mathrm{11}\:\:\:\:\right]×\mathrm{4} \\ $$$$\:\:\:\:\:\:\:{so}\:\:\:\:\:\begin{cases}{\mathrm{16}{x}−\mathrm{4}{y}\:=\mathrm{44}}\\{\mathrm{4}{y}+\mathrm{5}{x}\:=\mathrm{55}}\end{cases} \\ $$$$\Rightarrow\:\:\:\:\:\:\:\:\mathrm{21}{x}=\mathrm{99}\:\:\:\:…

Compare-2020-3-1-2020-and-505-2021-2-

Question Number 151889 by mathdanisur last updated on 23/Aug/21 $$\mathrm{Compare}: \\ $$$$\sqrt[{\mathrm{2020}}]{\left(\mathrm{2020}!\right)^{\mathrm{3}} }\:\:\:\mathrm{and}\:\:\:\mathrm{505}\centerdot\mathrm{2021}^{\mathrm{2}} \\ $$ Answered by MJS_new last updated on 24/Aug/21 $$\forall{n}\in\mathbb{N}\mid{n}>\mathrm{1}:\left({n}!\right)^{\frac{\mathrm{3}}{{n}}} <\frac{{n}}{\mathrm{4}}×\left({n}+\mathrm{1}\right)^{\mathrm{2}} \\…

Question-20819

Question Number 20819 by ajfour last updated on 03/Sep/17 Commented by ajfour last updated on 03/Sep/17 $${A}\:{particle}\:{moves}\:{along}\:{the}\:{spiral} \\ $$$${shown}.\:{Determine}\:{the}\:{magnitude} \\ $$$${of}\:{the}\:{velocity}\:{of}\:{the}\:{particle}\:{in} \\ $$$${terms}\:{of}\:\boldsymbol{{b}},\:\boldsymbol{\theta},\:\overset{.} {\boldsymbol{\theta}}\:. \\…

Question-151890

Question Number 151890 by mathdanisur last updated on 23/Aug/21 Answered by mnjuly1970 last updated on 24/Aug/21 $$\:\:\:{x}^{\:\mathrm{2}} +{y}^{\:\mathrm{2}} +{z}^{\:\mathrm{2}} \:+\left({x}^{\:\mathrm{2}} +\:\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\right)+\left({y}^{\:\mathrm{2}} +\frac{\mathrm{1}}{{y}^{\:\mathrm{2}} }\:\right) \\…

f-x-x-1-x-2-x-2021-f-2021-

Question Number 151884 by mathdanisur last updated on 23/Aug/21 $$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{x}-\mathrm{1}\right)\left(\mathrm{x}-\mathrm{2}\right)…\left(\mathrm{x}-\mathrm{2021}\right) \\ $$$$\mathrm{f}\:^{'} \left(\mathrm{2021}\right)\:=\:? \\ $$ Answered by mr W last updated on 24/Aug/21 $$\mathrm{ln}\:{y}=\mathrm{ln}\:\left({x}−\mathrm{1}\right)+\mathrm{ln}\:\left({x}−\mathrm{2}\right)+…+\mathrm{ln}\:\left({x}−\mathrm{2021}\right) \\…