Question Number 20686 by NECx last updated on 31/Aug/17 $$\int\left({tanx}\right)^{\mathrm{1}/\mathrm{3}} {dx} \\ $$ Commented by NECx last updated on 01/Sep/17 $${please}\:{help} \\ $$ Answered by…
Question Number 151758 by mathdanisur last updated on 22/Aug/21 $$\mathrm{f}\left(\mathrm{3x}+\mathrm{1}\right)=\mathrm{g}^{−\mathrm{1}} \left(\mathrm{5x}^{\mathrm{2}} −\mathrm{2}\right) \\ $$$$\left({g}\:{o}\:{f}\right)^{'} \:\left(\mathrm{4}\right)\:=\:? \\ $$ Commented by otchereabdullai@gmail.com last updated on 23/Aug/21 $$\mathrm{nice}!…
Question Number 20684 by Tinkutara last updated on 31/Aug/17 $${If}\:{the}\:{equation}\:{x}^{\mathrm{2}} \:+\:\beta^{\mathrm{2}} \:=\:\mathrm{1}\:−\:\mathrm{2}\beta{x}\:{and} \\ $$$${x}^{\mathrm{2}} \:+\:\alpha^{\mathrm{2}} \:=\:\mathrm{1}\:−\:\mathrm{2}\alpha{x}\:{have}\:{one}\:{and}\:{only} \\ $$$${one}\:{root}\:{in}\:{common},\:{then}\:\mid\alpha\:−\:\beta\mid\:{is} \\ $$$${equal}\:{to} \\ $$ Answered by $@ty@m…
Question Number 151753 by Integrals last updated on 22/Aug/21 Commented by puissant last updated on 22/Aug/21 $${K}=\int\sqrt{{x}}{e}^{\sqrt{{x}}} {dx} \\ $$$${u}=\sqrt{{x}}\rightarrow\:{u}^{\mathrm{2}} ={x}\:\rightarrow\:{dx}=\mathrm{2}{udu} \\ $$$${K}=\mathrm{2}\int{u}^{\mathrm{2}} {e}^{{u}} {du}…
Question Number 151754 by Integrals last updated on 22/Aug/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 86214 by sakeefhasan05@gmail.com last updated on 27/Mar/20 Commented by sakeefhasan05@gmail.com last updated on 27/Mar/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{this}??? \\ $$ Commented by Kunal12588 last updated on…
Question Number 151744 by mnjuly1970 last updated on 22/Aug/21 $$ \\ $$$$\:\:\:\:\:\:\:\:{show}\:\:{that}…. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathscr{F}\::=\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{sin}^{\:\mathrm{4}} \:\left({x}^{\:\mathrm{2}} \:\right)\:}{{x}^{\:\mathrm{2}} }\:{dx}\:=\:\frac{\mathrm{1}}{\mathrm{8}}\:\left(\:\mathrm{4}\:−\:\sqrt{\mathrm{2}}\:\right)\sqrt{\pi}\:…..\blacksquare\:\:\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:\:…{m}.{n}… \\ $$$$…
Question Number 151747 by mathdanisur last updated on 22/Aug/21 $$\mathrm{let}\:\:\mathrm{f}\left(\mathrm{x}\right)=\frac{\lambda-\mathrm{x}}{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }\:\:\mathrm{and}\:\:\lambda\geqslant\frac{-\mathrm{3}}{\mathrm{4}} \\ $$$$\mathrm{solve}\:\mathrm{in}\:\mathbb{R}\:\:\mathrm{f}\left(\mathrm{f}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\right)\:\leqslant\:\mathrm{0} \\ $$ Answered by mr W last updated on 22/Aug/21 $${say}\:{g}\left({x}\right)={f}\left({f}\left({x}\right)\right) \\…
Question Number 86206 by behi83417@gmail.com last updated on 27/Mar/20 $$\mathrm{1}.\mathrm{line}:\boldsymbol{\mathrm{y}}=−\boldsymbol{\mathrm{x}}+\mathrm{4}\:\:,\mathrm{meets}\::\:\boldsymbol{\mathrm{xy}}=\mathrm{1}\:\mathrm{at}:\boldsymbol{\mathrm{A}},\boldsymbol{\mathrm{B}}. \\ $$$$\:\:\:\:\:\:\Rightarrow\:\:\mathrm{S}_{\mathrm{O}\overset{\bigtriangleup} {\mathrm{A}B}} =?\:\left(\mathrm{O}=\mathrm{origin}\:\mathrm{of}\:\mathrm{cordinates}\right) \\ $$$$\mathrm{2}.\mathrm{find}\::\mathrm{center}\:\mathrm{area}\:\mathrm{of}\:\mathrm{region}\:\mathrm{bonded}\:\mathrm{by} \\ $$$$\mathrm{corve}:\:\:\sqrt{\frac{\boldsymbol{\mathrm{x}}}{\boldsymbol{\mathrm{a}}}}+\sqrt{\frac{\boldsymbol{\mathrm{y}}}{\boldsymbol{\mathrm{b}}}}=\mathrm{1},\mathrm{and}\:\boldsymbol{\mathrm{x}},\boldsymbol{\mathrm{y}}\:\mathrm{axes}. \\ $$$$\left(\boldsymbol{\mathrm{a}}\neq\boldsymbol{\mathrm{b}}\right)\in\boldsymbol{\mathrm{R}}^{+} \\ $$ Commented by jagoll…
Question Number 20671 by Tinkutara last updated on 31/Aug/17 $${The}\:{total}\:{number}\:{of}\:{positive}\:{integral} \\ $$$${solution}\left({s}\right)\:{of}\:{the}\:{inequation} \\ $$$$\frac{{x}^{\mathrm{2}} \left(\mathrm{3}{x}\:−\:\mathrm{4}\right)^{\mathrm{3}} \left({x}\:−\:\mathrm{2}\right)^{\mathrm{4}} }{\left({x}\:−\:\mathrm{5}\right)^{\mathrm{5}} \left(\mathrm{2}{x}\:−\:\mathrm{7}\right)^{\mathrm{6}} }\:\leqslant\:\mathrm{0}\:{is}/{are} \\ $$ Answered by ajfour last…