Menu Close

Author: Tinku Tara

2sin-x-3cos-x-7sin-x-2cos-x-

Question Number 20388 by tammi last updated on 26/Aug/17 $$\int\frac{\mathrm{2sin}\:{x}+\mathrm{3cos}\:{x}}{\mathrm{7sin}\:{x}−\mathrm{2cos}\:{x}} \\ $$ Answered by $@ty@m last updated on 26/Aug/17 $${Let}\:\mathrm{2}{sinx}+\mathrm{3}{cosx}={A}\left(\mathrm{7}{sinx}−\mathrm{2}{cosx}\right)+{B}\left(\mathrm{7}{cosx}+\mathrm{2}{sinx}\right) \\ $$$$\Rightarrow\mathrm{7}{A}−\mathrm{2}{B}=\mathrm{2} \\ $$$$\:\:\:\:−\mathrm{2}{A}+\mathrm{7}{B}=\mathrm{3} \\…

sin-pxcos-qxdx-

Question Number 20387 by tammi last updated on 26/Aug/17 $$\int\mathrm{sin}\:{px}\mathrm{cos}\:{qxdx} \\ $$ Answered by mrW1 last updated on 26/Aug/17 $$\mathrm{sin}\:\left(\mathrm{p}+\mathrm{q}\right)\mathrm{x}=\mathrm{sin}\:\mathrm{px}\:\mathrm{cos}\:\mathrm{qx}+\mathrm{cos}\:\mathrm{px}\:\mathrm{sin}\:\mathrm{qx} \\ $$$$\mathrm{sin}\:\left(\mathrm{p}−\mathrm{q}\right)\mathrm{x}=\mathrm{sin}\:\mathrm{px}\:\mathrm{cos}\:\mathrm{qx}−\mathrm{cos}\:\mathrm{px}\:\mathrm{sin}\:\mathrm{qx} \\ $$$$\Rightarrow\mathrm{sin}\:\mathrm{px}\:\mathrm{cos}\:\mathrm{qx}=\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{sin}\:\left(\mathrm{p}+\mathrm{q}\right)\mathrm{x}+\mathrm{sin}\:\left(\mathrm{p}−\mathrm{q}\right)\mathrm{x}\right] \\…

16-9x-2-dx-

Question Number 20385 by tammi last updated on 26/Aug/17 $$\int\sqrt{\mathrm{16}−\mathrm{9}{x}^{\mathrm{2}} {dx}} \\ $$ Answered by ajfour last updated on 26/Aug/17 $$=\mathrm{3}\int\sqrt{\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{2}} −{x}^{\mathrm{2}} }\:{dx} \\ $$$$=\frac{\mathrm{3}{x}}{\mathrm{2}}\sqrt{\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{2}}…

x-3-dx-2-3x-2-

Question Number 20384 by tammi last updated on 26/Aug/17 $$\int\frac{{x}^{\mathrm{3}} {dx}}{\left(\mathrm{2}+\mathrm{3}{x}\right)^{\mathrm{2}} } \\ $$ Answered by $@ty@m last updated on 26/Aug/17 $${let}\:\mathrm{2}+\mathrm{3}{x}={t}\:\Rightarrow\mathrm{3}{dx}={dt}\:\&\:{x}=\frac{{t}−\mathrm{2}}{\mathrm{3}} \\ $$$$\int\left(\frac{{t}−\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{3}} \frac{{dt}}{\mathrm{3}{t}^{\mathrm{2}}…

find-all-continous-functions-f-R-R-such-that-f-x-2-1-f-1-x-4-x-R-

Question Number 151453 by mathdanisur last updated on 21/Aug/21 $$\mathrm{find}\:\mathrm{all}\:\mathrm{continous}\:\mathrm{functions}\:\mathrm{f}\::\:\mathbb{R}\rightarrow\mathbb{R} \\ $$$$\mathrm{such}\:\mathrm{that}: \\ $$$$\mathrm{f}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{1}\right)\:=\:\mathrm{f}\left(\sqrt{\mathrm{1}\:+\:\mathrm{x}^{\mathrm{4}} }\right)\:;\:\forall\mathrm{x}\in\mathbb{R} \\ $$ Commented by MJS_new last updated on 21/Aug/21…

dx-x-2-x-1-3-

Question Number 20383 by tammi last updated on 26/Aug/17 $$\int\frac{{dx}}{{x}\sqrt{\mathrm{2}+\left({x}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }} \\ $$ Answered by $@ty@m last updated on 26/Aug/17 $${let}\:\mathrm{2}+{x}^{\frac{\mathrm{1}}{\mathrm{3}}} ={t}^{\mathrm{2}} \Rightarrow{x}=\left({t}^{\mathrm{2}} −\mathrm{2}\right)^{\mathrm{3}} \\…

when-a-die-is-rolled-42-times-it-is-so-happened-that-a-face-having-the-digit-i-times-occured-2i-times-then-find-the-mean-deviation-from-the-mean-of-this-discrete-frequency-distribution-ans-is-80-

Question Number 151454 by gsk2684 last updated on 21/Aug/21 $${when}\:{a}\:{die}\:{is}\:{rolled}\:\mathrm{42}\:{times}\:{it}\:{is}\:{so} \\ $$$${happened}\:{that}\:{a}\:{face}\:{having}\:{the}\:{digit}\:{i} \\ $$$${times}\:{occured}\:\mathrm{2}{i}\:{times}.\:{then}\:{find}\:{the} \\ $$$${mean}\:{deviation}\:{from}\:{the}\:{mean}\:{of}\:{this} \\ $$$${discrete}\:{frequency}\:{distribution}. \\ $$$${ans}\:{is}\:\frac{\mathrm{80}}{\mathrm{63}} \\ $$$${sol}\:{pls} \\ $$ Commented…

0-sin-x-2-dx-

Question Number 151449 by mathdanisur last updated on 21/Aug/21 $$\Omega\:=\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\mathrm{sin}\left(\mathrm{x}^{\mathrm{2}} \right)\:\mathrm{dx}\:=\:? \\ $$ Answered by puissant last updated on 21/Aug/21 $${f}\left({u}\right)={e}^{−{u}^{\mathrm{2}} } \\…

Let-I-n-0-pi-4-1-tan-A-1-tan-A-n-dA-what-is-the-Laplace-Transform-and-the-Fourier-Transform-

Question Number 85914 by frc2crc last updated on 26/Mar/20 $${Let}\:{I}_{{n}} =\overset{\pi/\mathrm{4}} {\int}_{\mathrm{0}\:} \left(\frac{\mathrm{1}−\mathrm{tan}\:{A}}{\mathrm{1}+\mathrm{tan}\:{A}}\right)^{{n}} {dA}\:\:{what}\:{is} \\ $$$${the}\:{Laplace}\:{Transform}\:{and}\:{the} \\ $$$${Fourier}\:{Transform} \\ $$ Answered by mind is power…