Menu Close

Author: Tinku Tara

Prove-that-Artimetric-mean-Geometric-mean-a-b-2-ab-

Question Number 151448 by mathdanisur last updated on 21/Aug/21 $$\mathrm{Prove}\:\mathrm{that}: \\ $$$$\boldsymbol{\mathrm{A}}\mathrm{rtimetric}\:\mathrm{mean}\:\geqslant\:\boldsymbol{\mathrm{G}}\mathrm{eometric}\:\mathrm{mean} \\ $$$$\frac{\mathrm{a}\:+\:\mathrm{b}}{\mathrm{2}}\:\geqslant\:\sqrt{\mathrm{ab}} \\ $$ Commented by puissant last updated on 21/Aug/21 $$\forall\:\left({a},{b}\right)\in\mathbb{R}^{\mathrm{2}} ,…

A-small-particle-of-mass-m-is-projected-at-an-angle-with-the-x-axis-with-an-initial-velocity-v-0-in-the-x-y-plane-as-shown-in-the-Figure-At-a-time-t-lt-v-0-sin-g-the-angular-momentum-of-

Question Number 20375 by Tinkutara last updated on 26/Aug/17 $$\mathrm{A}\:\mathrm{small}\:\mathrm{particle}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{is}\:\mathrm{projected} \\ $$$$\mathrm{at}\:\mathrm{an}\:\mathrm{angle}\:\theta\:\mathrm{with}\:\mathrm{the}\:{x}-\mathrm{axis}\:\mathrm{with}\:\mathrm{an} \\ $$$$\mathrm{initial}\:\mathrm{velocity}\:{v}_{\mathrm{0}} \:\mathrm{in}\:\mathrm{the}\:{x}-{y}\:\mathrm{plane}\:\mathrm{as} \\ $$$$\mathrm{shown}\:\mathrm{in}\:\mathrm{the}\:\mathrm{Figure}.\:\mathrm{At}\:\mathrm{a}\:\mathrm{time} \\ $$$${t}\:<\:\frac{{v}_{\mathrm{0}} \:\mathrm{sin}\:\theta}{{g}},\:\mathrm{the}\:\mathrm{angular}\:\mathrm{momentum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{particle}\:\mathrm{is} \\ $$ Commented…

Question-151444

Question Number 151444 by liberty last updated on 21/Aug/21 Answered by mr W last updated on 21/Aug/21 $${say}\:{BE}={diameter}=\mathrm{2}×{AB} \\ $$$$\frac{{BC}}{{BO}}=\frac{{BO}}{{BE}} \\ $$$$\Rightarrow{BC}×{BE}={BO}^{\mathrm{2}} \\ $$$$\Rightarrow{BC}×\mathrm{2}×{AB}={BO}^{\mathrm{2}} \\…

sin-1-x-a-x-dx-a-gt-0-

Question Number 85909 by jagoll last updated on 26/Mar/20 $$\int\:\mathrm{sin}^{−\mathrm{1}} \:\left(\sqrt{\frac{\mathrm{x}}{\mathrm{a}+\mathrm{x}}}\right)\:\mathrm{dx}\:,\:\mathrm{a}\:>\:\mathrm{0} \\ $$ Commented by john santu last updated on 26/Mar/20 $${let}\:\sqrt{\frac{{x}}{{a}+{x}}}\:=\:{n}\:\Rightarrow\:{x}\:=\:\frac{{an}^{\mathrm{2}} }{\mathrm{1}−{n}^{\mathrm{2}} } \\…

The-two-roots-of-an-equation-x-3-9x-2-14x-24-0-are-in-the-ratio-3-2-Find-the-roots-

Question Number 20372 by Tinkutara last updated on 26/Aug/17 $$\mathrm{The}\:\mathrm{two}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{an}\:\mathrm{equation}\:{x}^{\mathrm{3}} \:−\:\mathrm{9}{x}^{\mathrm{2}} \\ $$$$+\:\mathrm{14}{x}\:+\:\mathrm{24}\:=\:\mathrm{0}\:\mathrm{are}\:\mathrm{in}\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{3}\::\:\mathrm{2}. \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{roots}. \\ $$ Answered by $@ty@m last updated on 26/Aug/17 $$\alpha+\mathrm{3}\beta+\mathrm{2}\beta=\mathrm{9}\:\Rightarrow\alpha+\mathrm{5}\beta=\mathrm{9}−−\left(\mathrm{1}\right)…

If-is-a-real-root-of-2x-3-3x-2-6x-6-0-then-find-where-denotes-the-greatest-integer-function-

Question Number 20368 by Tinkutara last updated on 26/Aug/17 $$\mathrm{If}\:\alpha\:\mathrm{is}\:\mathrm{a}\:\mathrm{real}\:\mathrm{root}\:\mathrm{of}\:\mathrm{2}{x}^{\mathrm{3}} \:−\:\mathrm{3}{x}^{\mathrm{2}} \:+\:\mathrm{6}{x}\:+\:\mathrm{6}\:=\:\mathrm{0}, \\ $$$$\mathrm{then}\:\mathrm{find}\:\left[\alpha\right]\:\mathrm{where}\:\left[\centerdot\right]\:\mathrm{denotes}\:\mathrm{the} \\ $$$$\mathrm{greatest}\:\mathrm{integer}\:\mathrm{function}. \\ $$ Commented by ajfour last updated on 26/Aug/17…

find-the-coefficients-of-x-2-and-x-3-terms-in-the-expansion-of-1-x-1-2x-2-1-3x-3-1-100x-100-

Question Number 85902 by mr W last updated on 26/Mar/20 $${find}\:{the}\:{coefficients}\:{of}\:{x}^{\mathrm{2}} \:{and}\:{x}^{\mathrm{3}} \: \\ $$$${terms}\:{in}\:{the}\:{expansion}\:{of} \\ $$$$\left(\mathrm{1}+{x}\right)\left(\mathrm{1}+\mathrm{2}{x}\right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{3}{x}\right)^{\mathrm{3}} …\left(\mathrm{1}+\mathrm{100}{x}\right)^{\mathrm{100}} \\ $$ Commented by Serlea last…

Let-f-x-x-3-3x-2-9x-6sinx-then-find-the-number-of-real-roots-of-the-equation-1-x-f-1-2-x-f-2-3-x-f-3-0-

Question Number 20367 by Tinkutara last updated on 26/Aug/17 $$\mathrm{Let}\:{f}\left({x}\right)\:=\:{x}^{\mathrm{3}} \:+\:\mathrm{3}{x}^{\mathrm{2}} \:+\:\mathrm{9}{x}\:+\:\mathrm{6sin}{x},\:\mathrm{then} \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{real}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{equation} \\ $$$$\frac{\mathrm{1}}{{x}\:−\:{f}\left(\mathrm{1}\right)}\:+\:\frac{\mathrm{2}}{{x}\:−\:{f}\left(\mathrm{2}\right)}\:+\:\frac{\mathrm{3}}{{x}\:−\:{f}\left(\mathrm{3}\right)}\:=\:\mathrm{0}. \\ $$ Answered by ajfour last updated…