Menu Close

Author: Tinku Tara

tan-2-x-2tan-x-sin-y-cos-y-2-0-Find-x-y-

Question Number 20366 by ajfour last updated on 26/Aug/17 $$\mathrm{tan}\:^{\mathrm{2}} {x}+\mathrm{2tan}\:{x}\:\left(\mathrm{sin}\:{y}+\mathrm{cos}\:{y}\right)+\mathrm{2}=\mathrm{0} \\ $$$${Find}\:{x},{y}\:. \\ $$ Answered by mrW1 last updated on 26/Aug/17 $$\mathrm{D}=\mathrm{4}\left(\mathrm{sin}\:\mathrm{y}+\mathrm{cos}\:\mathrm{y}\right)^{\mathrm{2}} −\mathrm{4}×\mathrm{2}\geqslant\mathrm{0} \\…

Question-20364

Question Number 20364 by mondodotto@gmail.com last updated on 26/Aug/17 Answered by Tinkutara last updated on 26/Aug/17 $$\mathrm{59}\:=\:\mathrm{77}\:−\:\left(\mathrm{6}\:+\:\mathrm{3}{x}\right)\:+\:{x} \\ $$$$\mathrm{2}{x}\:=\:\mathrm{12} \\ $$$${x}\:=\:\mathrm{6} \\ $$ Commented by…

Question-151435

Question Number 151435 by mathdanisur last updated on 21/Aug/21 Commented by peter frank last updated on 21/Aug/21 $$\mathrm{new}\:\:\mathrm{ID}\:\mathrm{but}\:\mathrm{same}\:\mathrm{guy}.\mathrm{mr}\:\mathrm{w}\:\:\mathrm{do}\:\mathrm{you}\:\mathrm{remember}? \\ $$ Commented by mr W last…

Question-85896

Question Number 85896 by ar247 last updated on 25/Mar/20 Commented by abdomathmax last updated on 25/Mar/20 $${I}=\int\:\:\frac{\mathrm{5}{x}−\mathrm{5}}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{8}{x}−\mathrm{3}}{dx} \\ $$$$\mathrm{3}{x}^{\mathrm{2}} −\mathrm{8}{x}−\mathrm{3}=\mathrm{0}\:\rightarrow\Delta^{'} =\mathrm{4}^{\mathrm{2}} −\left(\mathrm{3}\right)\left(−\mathrm{3}\right)\:=\mathrm{16}+\mathrm{9}=\mathrm{25} \\ $$$${x}_{\mathrm{1}}…

x-2-x-2-3x-3-x-1-dx-

Question Number 151428 by peter frank last updated on 21/Aug/21 $$\int\frac{\mathrm{x}+\mathrm{2}}{\left(\mathrm{x}^{\mathrm{2}} +\mathrm{3x}+\mathrm{3}\right)\sqrt{\mathrm{x}+\mathrm{1}}}\mathrm{dx} \\ $$$$ \\ $$ Answered by MJS_new last updated on 21/Aug/21 $$\left(\mathrm{1}\right)\:\mathrm{trying}\:\mathrm{something} \\…

0-pi-2-dx-cos-x-3-sin-x-2-dx-1-3-

Question Number 151425 by peter frank last updated on 21/Aug/21 $$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\mathrm{dx}}{\left(\mathrm{cos}\:\mathrm{x}+\sqrt{\mathrm{3}}\:\mathrm{sin}\:\mathrm{x}\right)^{\mathrm{2}} }\mathrm{dx}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}} \\ $$ Answered by Olaf_Thorendsen last updated on 21/Aug/21 $$\mathrm{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}}…