Menu Close

Author: Tinku Tara

solve-tanh-x-1-cosh-x-

Question Number 85845 by jagoll last updated on 25/Mar/20 $$\mathrm{solve}\:\mathrm{tanh}\:\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{cosh}\:\left(\mathrm{x}\right)} \\ $$ Answered by MJS last updated on 25/Mar/20 $$\frac{\mathrm{sinh}\:{x}}{\mathrm{cosh}\:{x}}=\frac{\mathrm{1}}{\mathrm{cosh}\:{x}} \\ $$$$\mathrm{cosh}\:{x}\:\neq\mathrm{0}\:\forall{x}\in\mathbb{R} \\ $$$$\mathrm{cosh}\:{x}\:\neq\mathrm{0}\:\Rightarrow\:{x}\neq\left(\frac{\mathrm{2}{n}+\mathrm{1}}{\mathrm{2}}\right)\pi\mathrm{i} \\…

For-what-value-of-k-x-y-z-2-k-x-2-y-2-z-2-can-be-resolved-into-linear-rational-factors-

Question Number 20308 by Tinkutara last updated on 25/Aug/17 $$\mathrm{For}\:\mathrm{what}\:\mathrm{value}\:\mathrm{of}\:{k},\:\left({x}\:+\:{y}\:+\:{z}\right)^{\mathrm{2}} \:+ \\ $$$${k}\left({x}^{\mathrm{2}} \:+\:{y}^{\mathrm{2}} \:+\:{z}^{\mathrm{2}} \right)\:\mathrm{can}\:\mathrm{be}\:\mathrm{resolved}\:\mathrm{into} \\ $$$$\mathrm{linear}\:\mathrm{rational}\:\mathrm{factors}? \\ $$ Answered by Tinkutara last updated…

the-equation-y-13-y-a-has-no-linear-term-find-value-of-a-what-is-means-of-no-linear-term-please-expkain-

Question Number 151377 by zakirullah last updated on 20/Aug/21 $$\:\:\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{equation}}\:\left(\boldsymbol{\mathrm{y}}+\mathrm{13}\right)\left(\boldsymbol{\mathrm{y}}+\boldsymbol{\mathrm{a}}\right)\:\boldsymbol{\mathrm{has}}\:\boldsymbol{\mathrm{no}}\:\boldsymbol{\mathrm{linear}}\:\boldsymbol{\mathrm{term}}.\: \\ $$$$\:\:\:\:\boldsymbol{\mathrm{find}}\:\boldsymbol{\mathrm{value}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{a}}?\:\boldsymbol{\mathrm{what}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{means}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{no}}\:\boldsymbol{\mathrm{linear}}\:\boldsymbol{\mathrm{term}}.\:\boldsymbol{\mathrm{please}}\:\boldsymbol{\mathrm{expkain}}? \\ $$$$ \\ $$ Commented by mr W last updated on 20/Aug/21 $${example}:…

Show-that-a-b-c-x-2-b-c-a-xy-c-a-b-y-2-will-be-a-perfect-square-if-a-b-c-are-in-H-P-

Question Number 20307 by Tinkutara last updated on 25/Aug/17 $$\mathrm{Show}\:\mathrm{that}\:{a}\left({b}\:−\:{c}\right){x}^{\mathrm{2}} \:+\:{b}\left({c}\:−\:{a}\right){xy}\:+ \\ $$$${c}\left({a}\:−\:{b}\right){y}^{\mathrm{2}} \:\mathrm{will}\:\mathrm{be}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{square}\:\mathrm{if}\:{a}, \\ $$$${b},\:{c}\:\mathrm{are}\:\mathrm{in}\:\mathrm{H}.\mathrm{P}. \\ $$ Answered by ajfour last updated on 25/Aug/17…

x-1-x-2-1-dx-

Question Number 85839 by sahnaz last updated on 25/Mar/20 $$\int\mathrm{x}×\frac{\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\mathrm{dx} \\ $$ Commented by jagoll last updated on 25/Mar/20 $$\int\:\frac{\mathrm{x}\:\mathrm{dx}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int\:\frac{\mathrm{d}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)}{\left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{1}/\mathrm{2}} }…