Menu Close

Author: Tinku Tara

Question-151204

Question Number 151204 by kalenis last updated on 19/Aug/21 Answered by JDamian last updated on 19/Aug/21 $$\left(\mathrm{1}\right) \\ $$$$\mathrm{Z}\left\{{y}\left[{k}+\mathrm{2}\right]+\mathrm{3}{y}\left[{k}+\mathrm{1}\right]+\mathrm{2}{y}\left[{k}\right]\right\}=\mathrm{Z}\left\{{x}\left[{k}\right]\right\} \\ $$$${z}^{\mathrm{2}} {Y}\left({z}\right)+\mathrm{3}{zY}\left({z}\right)+\mathrm{2}{Y}\left({z}\right)={X}\left({z}\right) \\ $$$$\left({z}^{\mathrm{2}} +\mathrm{3}{z}+\mathrm{2}\right){Y}\left({z}\right)={X}\left({z}\right)…

1-x-1-x-dx-

Question Number 85669 by john santu last updated on 23/Mar/20 $$\int\:\frac{\sqrt{\mathrm{1}+{x}}}{\:\sqrt{\mathrm{1}−{x}}}\:{dx} \\ $$$$ \\ $$ Commented by mathmax by abdo last updated on 24/Mar/20 $${I}\:=\int\:\frac{\sqrt{\mathrm{1}+{x}}}{\:\sqrt{\mathrm{1}−{x}}}{dx}\:\Rightarrow\:{I}\:=\int\sqrt{\frac{\mathrm{1}+{x}}{\mathrm{1}−{x}}}{dx}\:{we}\:{use}\:{the}\:{changement}\:…

Question-20132

Question Number 20132 by mondodotto@gmail.com last updated on 22/Aug/17 Answered by mrW1 last updated on 22/Aug/17 $$\mathrm{log}\:\mathrm{x}^{\mathrm{2}} =\frac{\mathrm{x}}{\mathrm{25}} \\ $$$$\mathrm{x}^{\mathrm{2}} =\mathrm{10}^{\frac{\mathrm{x}}{\mathrm{25}}} \\ $$$$\mathrm{x}=\pm\mathrm{10}^{\frac{\mathrm{x}}{\mathrm{50}}} \\ $$$$\mathrm{50}×\frac{\mathrm{x}}{\mathrm{50}}=\pm\mathrm{10}^{\frac{\mathrm{x}}{\mathrm{50}}}…

In-rectangle-ABCD-AB-8-BC-20-P-is-a-point-on-AD-so-that-BPC-90-If-r-1-r-2-r-3-are-the-radii-of-the-incircles-of-APB-BPC-and-CPD-find-r-1-r-2-r-3-

Question Number 20131 by NECC last updated on 22/Aug/17 $${In}\:{rectangle}\:{ABCD},{AB}=\mathrm{8}, \\ $$$${BC}=\mathrm{20}.{P}\:{is}\:{a}\:{point}\:{on}\:{AD}\:{so} \\ $$$${that}\:\angle{BPC}=\mathrm{90}°.{If}\:{r}_{\mathrm{1}} ,{r}_{\mathrm{2}} ,{r}_{\mathrm{3}} \:{are}\:{the} \\ $$$${radii}\:{of}\:{the}\:{incircles}\:{of}\:{APB}, \\ $$$${BPC},\:{and}\:{CPD}.\:{find}\:{r}_{\mathrm{1}} +{r}_{\mathrm{2}} +{r}_{\mathrm{3}} \\ $$…

dx-1-sin-2x-

Question Number 85667 by john santu last updated on 23/Mar/20 $$\int\:\frac{{dx}}{\:\sqrt{\mathrm{1}−\mathrm{sin}\:\mathrm{2}{x}}}\: \\ $$ Answered by som(math1967) last updated on 24/Mar/20 $$\int\frac{{dx}}{\left({cosx}−{sinx}\right)} \\ $$$$\int\frac{{dx}}{\:\sqrt{\mathrm{2}}{cos}\left({x}+\frac{\pi}{\mathrm{4}}\right)} \\ $$$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\int{sec}\left({x}+\frac{\pi}{\mathrm{4}}\right){dx}…

Show-that-a-group-order-100-is-not-simple-

Question Number 85664 by Jidda28 last updated on 23/Mar/20 $$\boldsymbol{{S}\mathrm{how}}\:\boldsymbol{\mathrm{that}}\:\boldsymbol{\mathrm{a}}\:\boldsymbol{\mathrm{group}}\:\boldsymbol{\mathrm{order}}\:\mathrm{100}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{not}}\:\boldsymbol{\mathrm{simple}} \\ $$ Commented by mind is power last updated on 24/Mar/20 $$\mathrm{100}=\mathrm{2}^{\mathrm{2}} .\mathrm{5}^{\mathrm{2}} \\ $$$${let}\:{see}\:{sylow}\:{Theorem}…