Menu Close

Author: Tinku Tara

By-using-concept-of-complex-number-show-that-tan-5-tan-5-10tan-3-5tan-5tan-4-10tan-2-1-

Question Number 226780 by Spillover last updated on 14/Dec/25 $${By}\:{using}\:{concept}\:{of}\:{complex} \\ $$$${number} \\ $$$${show}\:{that} \\ $$$$\mathrm{tan}\:\mathrm{5}\theta=\frac{\mathrm{tan}\:^{\mathrm{5}} \theta−\mathrm{10tan}\:^{\mathrm{3}} \theta+\mathrm{5tan}\:\theta}{\mathrm{5tan}\:^{\mathrm{4}} \theta−\mathrm{10tan}\:^{\mathrm{2}} \theta+\mathrm{1}} \\ $$ Answered by Frix…

Approximate-0-1-xe-x-2-dx-with-6-ordinates-Use-both-rules-Simpsons-and-Trapozoidal-rules-hence-evaluate-and-calculate-the-percentage-error-commetted-for-each-case-Give-comments-

Question Number 226776 by Spillover last updated on 14/Dec/25 $${Approximate}\:\int_{\mathrm{0}} ^{\mathrm{1}} {xe}^{{x}^{\mathrm{2}} } {dx}\:{with}\:\mathrm{6}\:{ordinates}. \\ $$$${Use}\:{both}\:{rules}\:{Simpsons}\:{and} \\ $$$${Trapozoidal}\:{rules},{hence}\:{evaluate}\:{and} \\ $$$${calculate}\:{the}\:{percentage}\:{error} \\ $$$${commetted}\:{for}\:{each}\:{case}.{Give}\:{comments} \\ $$$$ \\…

Show-that-0-1-x-2-1-x-2-1-dx-4-pi-4-Hence-by-using-Simpson-s-rule-find-the-value-of-pi-with-eleven-ordinates-correct-to-4-decimal-places-

Question Number 226777 by Spillover last updated on 16/Dec/25 $${Show}\:{that} \\ $$$$\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{\mathrm{2}} \left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{−\mathrm{1}} {dx}=\frac{\mathrm{4}−\pi}{\mathrm{4}} \\ $$$${Hence}\:{by}\:{using}\:{Simpson}^{'} {s} \\ $$$${rule}\:{find}\:{the}\:{value}\:\:{of}\:\pi\:{with}\: \\ $$$${eleven}\:{ordinates}. \\…

By-using-De-Moivres-theorm-simplify-a-cos-pi-2-isin-pi-2-cos-pi-3-isin-pi-3-cos-pi-3-isin-pi-3-b-cos-pi-8-isin-pi-8-cos-pi-6-isin-pi-6-

Question Number 226779 by Spillover last updated on 14/Dec/25 $${By}\:{using}\:{De}\:{Moivres}\:{theorm} \\ $$$${simplify} \\ $$$$\left({a}\right)\frac{\left(\mathrm{cos}\:\frac{\pi}{\mathrm{2}}−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{2}}\right)\left(\mathrm{cos}\:\frac{\pi}{\mathrm{3}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{3}}\right)}{\mathrm{cos}\:\frac{\pi}{\mathrm{3}}−{i}\mathrm{sin}\:\frac{\pi}{\mathrm{3}}} \\ $$$$\left({b}\right)\frac{\mathrm{cos}\:\frac{\pi}{\mathrm{8}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{8}}}{\mathrm{cos}\:\frac{\pi}{\mathrm{6}}+{i}\mathrm{sin}\:\frac{\pi}{\mathrm{6}}} \\ $$ Answered by Frix last updated on 14/Dec/25…