Question Number 85580 by niroj last updated on 23/Mar/20 $$\boldsymbol{\mathrm{Solve}}: \\ $$$$\:\left(\mathrm{D}^{\mathrm{2}} +\mathrm{2D}+\mathrm{1}\right)\mathrm{y}=\:\mathrm{x}\:\mathrm{cos}\:\mathrm{x} \\ $$$$ \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 20045 by mondodotto@gmail.com last updated on 20/Aug/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 151118 by mnjuly1970 last updated on 18/Aug/21 $$\:\: \\ $$$$\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{\:{arctan}\left(\frac{{x}}{\mathrm{2}}\right)+{arctan}\left(\mathrm{2}{x}\right)}{{x}^{\:\mathrm{2}} +\mathrm{1}}\overset{?} {=}\frac{\pi^{\:\mathrm{2}} }{\mathrm{4}} \\ $$$$ \\ $$ Answered by Olaf_Thorendsen last…
Question Number 20044 by mondodotto@gmail.com last updated on 20/Aug/17 Answered by $@ty@m last updated on 20/Aug/17 $$=\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{2}{sin}\mathrm{4}{xcos}\mathrm{2}{xdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left({sin}\mathrm{6}{x}+{sin}\mathrm{2}{x}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{sin}\mathrm{6}{xdx}+\frac{\mathrm{1}}{\mathrm{2}}\int{sin}\mathrm{2}{xdx} \\ $$$$=\frac{−{cos}\mathrm{6}{x}}{\mathrm{12}}−\frac{{cos}\mathrm{2}{x}}{\mathrm{4}}+{C} \\ $$…
Question Number 20042 by Tinkutara last updated on 20/Aug/17 $$\mathrm{In}\:\mathrm{the}\:\mathrm{situation}\:\mathrm{given},\:\mathrm{all}\:\mathrm{surfaces}\:\mathrm{are} \\ $$$$\mathrm{frictionless},\:\mathrm{pulley}\:\mathrm{is}\:\mathrm{ideal}\:\mathrm{and}\:\mathrm{string}\:\mathrm{is} \\ $$$$\mathrm{light},\:{F}\:=\:\frac{{mg}}{\mathrm{2}}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of} \\ $$$$\mathrm{block}\:\mathrm{2}. \\ $$ Commented by Tinkutara last updated on 20/Aug/17…
Question Number 151115 by mathdanisur last updated on 18/Aug/21 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}: \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \:+\:\mathrm{xy}^{\mathrm{2}} \:+\:\mathrm{x}\:+\:\mathrm{y}\:=\:\mathrm{0}}\\{\mathrm{x}^{\mathrm{2}} \mathrm{y}\:+\:\mathrm{xy}\:+\:\mathrm{1}\:=\:\mathrm{0}}\end{cases} \\ $$ Answered by dumitrel last updated on 18/Aug/21…
Question Number 151114 by mnjuly1970 last updated on 18/Aug/21 $$ \\ $$$$\:\:\:\:\:{solve}…. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\mathrm{Q}\::=\:\int_{\mathrm{0}} ^{\:\mathrm{1}} {ln}\:\left({x}\:\right).\:{ln}\:\left(\:\mathrm{2}−\:{x}\:\right){dx}\:=?\:………..\blacksquare \\ $$$$\:\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{m}.{n}.\mathrm{1970}… \\ $$$$ \\…
Question Number 20040 by Tinkutara last updated on 20/Aug/17 $$\mathrm{The}\:\mathrm{system}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{figure}\:\mathrm{is}\:\mathrm{given}\:\mathrm{an} \\ $$$$\mathrm{acceleration}\:'{a}'\:\mathrm{toward}\:\mathrm{left}.\:\mathrm{Assuming} \\ $$$$\mathrm{all}\:\mathrm{the}\:\mathrm{surfaces}\:\mathrm{to}\:\mathrm{be}\:\mathrm{frictionless},\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{force}\:\mathrm{on}\:\mathrm{the}\:\mathrm{sphere}\:\mathrm{by}\:\mathrm{inclined} \\ $$$$\mathrm{surface}. \\ $$ Commented by Tinkutara last updated…
Question Number 20038 by Tinkutara last updated on 20/Aug/17 $$\mathrm{In}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{shown},\:{m}\:\mathrm{slides}\:\mathrm{on} \\ $$$$\mathrm{inclined}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{wedge}\:{M}.\:\mathrm{If}\:\mathrm{velocity} \\ $$$$\mathrm{of}\:\mathrm{wedge}\:\mathrm{at}\:\mathrm{any}\:\mathrm{instant}\:\mathrm{be}\:{v},\:\mathrm{find} \\ $$$$\mathrm{velocity}\:\mathrm{of}\:{m}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{ground}. \\ $$ Commented by Tinkutara last updated on 20/Aug/17…
Question Number 151111 by alcohol last updated on 18/Aug/21 Answered by Olaf_Thorendsen last updated on 18/Aug/21 $$\mathrm{On}\:\mathrm{peut}\:\mathrm{eventuellement}\:\mathrm{avoir}\:\mathrm{3}\:\mathrm{balles} \\ $$$$\mathrm{noires}\:\mathrm{au}\:\mathrm{cours}\:\mathrm{des}\:\mathrm{3},\:\mathrm{4},\:\mathrm{5},…\:{k}\:\mathrm{premiers} \\ $$$$\mathrm{tirages}\:\mathrm{mais}\:\mathrm{pour}\:\mathrm{en}\:\mathrm{etre}\:\mathrm{certain},\:\mathrm{il}\:\mathrm{faut} \\ $$$$\mathrm{au}\:\mathrm{moins}\:\mathrm{tirer}\:\mathrm{1003}\:\mathrm{balles}. \\ $$$$\mathrm{Au}\:\mathrm{pire},\:\mathrm{on}\:\mathrm{aurait}\:\mathrm{500}\:\mathrm{balles}\:\mathrm{blanches},…