Menu Close

Author: Tinku Tara

Question-20044

Question Number 20044 by mondodotto@gmail.com last updated on 20/Aug/17 Answered by $@ty@m last updated on 20/Aug/17 $$=\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{2}{sin}\mathrm{4}{xcos}\mathrm{2}{xdx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int\left({sin}\mathrm{6}{x}+{sin}\mathrm{2}{x}\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int{sin}\mathrm{6}{xdx}+\frac{\mathrm{1}}{\mathrm{2}}\int{sin}\mathrm{2}{xdx} \\ $$$$=\frac{−{cos}\mathrm{6}{x}}{\mathrm{12}}−\frac{{cos}\mathrm{2}{x}}{\mathrm{4}}+{C} \\ $$…

In-the-situation-given-all-surfaces-are-frictionless-pulley-is-ideal-and-string-is-light-F-mg-2-find-the-acceleration-of-block-2-

Question Number 20042 by Tinkutara last updated on 20/Aug/17 $$\mathrm{In}\:\mathrm{the}\:\mathrm{situation}\:\mathrm{given},\:\mathrm{all}\:\mathrm{surfaces}\:\mathrm{are} \\ $$$$\mathrm{frictionless},\:\mathrm{pulley}\:\mathrm{is}\:\mathrm{ideal}\:\mathrm{and}\:\mathrm{string}\:\mathrm{is} \\ $$$$\mathrm{light},\:{F}\:=\:\frac{{mg}}{\mathrm{2}}\:,\:\mathrm{find}\:\mathrm{the}\:\mathrm{acceleration}\:\mathrm{of} \\ $$$$\mathrm{block}\:\mathrm{2}. \\ $$ Commented by Tinkutara last updated on 20/Aug/17…

Solve-the-system-x-2-y-2-xy-2-x-y-0-x-2-y-xy-1-0-

Question Number 151115 by mathdanisur last updated on 18/Aug/21 $$\mathrm{Solve}\:\mathrm{the}\:\mathrm{system}: \\ $$$$\begin{cases}{\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \:+\:\mathrm{xy}^{\mathrm{2}} \:+\:\mathrm{x}\:+\:\mathrm{y}\:=\:\mathrm{0}}\\{\mathrm{x}^{\mathrm{2}} \mathrm{y}\:+\:\mathrm{xy}\:+\:\mathrm{1}\:=\:\mathrm{0}}\end{cases} \\ $$ Answered by dumitrel last updated on 18/Aug/21…

The-system-shown-in-figure-is-given-an-acceleration-a-toward-left-Assuming-all-the-surfaces-to-be-frictionless-find-the-force-on-the-sphere-by-inclined-surface-

Question Number 20040 by Tinkutara last updated on 20/Aug/17 $$\mathrm{The}\:\mathrm{system}\:\mathrm{shown}\:\mathrm{in}\:\mathrm{figure}\:\mathrm{is}\:\mathrm{given}\:\mathrm{an} \\ $$$$\mathrm{acceleration}\:'{a}'\:\mathrm{toward}\:\mathrm{left}.\:\mathrm{Assuming} \\ $$$$\mathrm{all}\:\mathrm{the}\:\mathrm{surfaces}\:\mathrm{to}\:\mathrm{be}\:\mathrm{frictionless},\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{force}\:\mathrm{on}\:\mathrm{the}\:\mathrm{sphere}\:\mathrm{by}\:\mathrm{inclined} \\ $$$$\mathrm{surface}. \\ $$ Commented by Tinkutara last updated…

In-the-figure-shown-m-slides-on-inclined-surface-of-wedge-M-If-velocity-of-wedge-at-any-instant-be-v-find-velocity-of-m-with-respect-to-ground-

Question Number 20038 by Tinkutara last updated on 20/Aug/17 $$\mathrm{In}\:\mathrm{the}\:\mathrm{figure}\:\mathrm{shown},\:{m}\:\mathrm{slides}\:\mathrm{on} \\ $$$$\mathrm{inclined}\:\mathrm{surface}\:\mathrm{of}\:\mathrm{wedge}\:{M}.\:\mathrm{If}\:\mathrm{velocity} \\ $$$$\mathrm{of}\:\mathrm{wedge}\:\mathrm{at}\:\mathrm{any}\:\mathrm{instant}\:\mathrm{be}\:{v},\:\mathrm{find} \\ $$$$\mathrm{velocity}\:\mathrm{of}\:{m}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:\mathrm{ground}. \\ $$ Commented by Tinkutara last updated on 20/Aug/17…

Question-151111

Question Number 151111 by alcohol last updated on 18/Aug/21 Answered by Olaf_Thorendsen last updated on 18/Aug/21 $$\mathrm{On}\:\mathrm{peut}\:\mathrm{eventuellement}\:\mathrm{avoir}\:\mathrm{3}\:\mathrm{balles} \\ $$$$\mathrm{noires}\:\mathrm{au}\:\mathrm{cours}\:\mathrm{des}\:\mathrm{3},\:\mathrm{4},\:\mathrm{5},…\:{k}\:\mathrm{premiers} \\ $$$$\mathrm{tirages}\:\mathrm{mais}\:\mathrm{pour}\:\mathrm{en}\:\mathrm{etre}\:\mathrm{certain},\:\mathrm{il}\:\mathrm{faut} \\ $$$$\mathrm{au}\:\mathrm{moins}\:\mathrm{tirer}\:\mathrm{1003}\:\mathrm{balles}. \\ $$$$\mathrm{Au}\:\mathrm{pire},\:\mathrm{on}\:\mathrm{aurait}\:\mathrm{500}\:\mathrm{balles}\:\mathrm{blanches},…