Menu Close

Author: Tinku Tara

Question-85442

Question Number 85442 by Power last updated on 22/Mar/20 Commented by Power last updated on 22/Mar/20 $$\left[\boldsymbol{\mathrm{x}}\right]−\boldsymbol{\mathrm{integer}}\:\boldsymbol{\mathrm{part}}=\boldsymbol{\mathrm{trunc}}\left(\boldsymbol{\mathrm{x}}\right) \\ $$$$\left\{\boldsymbol{\mathrm{x}}\right\}−\boldsymbol{\mathrm{fractional}}\:\boldsymbol{\mathrm{part}}=\boldsymbol{\mathrm{frac}}\left(\boldsymbol{\mathrm{x}}\right) \\ $$ Answered by mr W…

if-x-4-1-3-2-1-3-1-find-3-x-3-x-2-1-x-3-

Question Number 150979 by mathdanisur last updated on 17/Aug/21 $$\mathrm{if}\:\:\mathrm{x}=\sqrt[{\mathrm{3}}]{\mathrm{4}}+\sqrt[{\mathrm{3}}]{\mathrm{2}}+\mathrm{1}\:\:\mathrm{find}\:\:\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{3}}{\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}} }=? \\ $$$$ \\ $$ Answered by john_santu last updated on 18/Aug/21 $$\:\mathrm{If}\:\mathrm{x}\:=\:\sqrt[{\mathrm{3}}]{\mathrm{4}}+\sqrt[{\mathrm{3}}]{\mathrm{2}}+\mathrm{1}\:\mathrm{then}\:\frac{\mathrm{3}}{\mathrm{x}}+\frac{\mathrm{3}}{\mathrm{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{3}}…

am-get-a-trou-ble-to-decrea-se-the-size-of-text-where-c-an-i-able-to-de-crease-the-size-of-text-

Question Number 19905 by j.masanja06@gmail.com last updated on 17/Aug/17 $$\mathrm{am}\:\mathrm{get}\:\mathrm{a}\:\mathrm{trou} \\ $$$$\mathrm{ble}\:\mathrm{to}\:\mathrm{decrea} \\ $$$$\mathrm{se}\:\mathrm{the}\:\mathrm{size}\:\mathrm{of}\: \\ $$$$\mathrm{text}!\:\mathrm{where}\:\mathrm{c} \\ $$$$\mathrm{an}\:\mathrm{i}\:\mathrm{able}\:\mathrm{to}\:\mathrm{de} \\ $$$$\mathrm{crease}\:\mathrm{the}\:\mathrm{size} \\ $$$$\mathrm{of}\:\mathrm{text}? \\ $$ Commented…

6x-4-4-x-4-2-dx-

Question Number 85441 by jagoll last updated on 22/Mar/20 $$\int\:\frac{\mathrm{6x}^{\mathrm{4}} −\mathrm{4}}{\:\sqrt{\mathrm{x}^{\mathrm{4}} −\mathrm{2}}}\:\mathrm{dx}\:=\:? \\ $$ Answered by john santu last updated on 22/Mar/20 $${I}\:=\:\int\:\frac{\mathrm{4}{x}^{\mathrm{4}} }{\:\sqrt{{x}^{\mathrm{4}} −\mathrm{2}}}\:{dx}\:=\:\mathrm{4}\int\:{x}\:\left(\frac{{x}^{\mathrm{3}}…

Prove-that-this-is-an-identity-in-x-x-a-x-b-c-a-c-b-x-b-x-c-a-b-a-c-x-c-x-a-b-c-b-a-1-

Question Number 19900 by Tinkutara last updated on 17/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{this}\:\mathrm{is}\:\mathrm{an}\:\mathrm{identity}\:\mathrm{in}\:{x}: \\ $$$$\frac{\left({x}−{a}\right)\left({x}−{b}\right)}{\left({c}−{a}\right)\left({c}−{b}\right)}+\frac{\left({x}−{b}\right)\left({x}−{c}\right)}{\left({a}−{b}\right)\left({a}−{c}\right)}+\frac{\left({x}−{c}\right)\left({x}−{a}\right)}{\left({b}−{c}\right)\left({b}−{a}\right)}=\mathrm{1} \\ $$ Answered by Rasheed.Sindhi last updated on 17/Aug/17 $$−\frac{\left({x}−{a}\right)\left({x}−{b}\right)}{\left({c}−{a}\right)\left(\mathrm{b}−\mathrm{c}\right)}−\frac{\left({x}−{b}\right)\left({x}−{c}\right)}{\left({a}−{b}\right)\left(\mathrm{c}−\mathrm{a}\right)}−\frac{\left({x}−{c}\right)\left({x}−{a}\right)}{\left({b}−{c}\right)\left(\mathrm{a}−\mathrm{b}\right)}=\mathrm{1} \\ $$$$ \\…