Menu Close

Author: Tinku Tara

a-n-number-series-a-k-3-2-a-k-a-k-2-a-k-7-find-k-

Question Number 207930 by hardmath last updated on 30/May/24 $$\mathrm{a}_{\boldsymbol{\mathrm{n}}} \:\:\:\mathrm{number}\:\mathrm{series} \\ $$$$\mathrm{a}_{\boldsymbol{\mathrm{k}}+\mathrm{3}} ^{\mathrm{2}} \:\:+\:\:\mathrm{a}_{\boldsymbol{\mathrm{k}}} \:\:=\:\:\mathrm{a}_{\boldsymbol{\mathrm{k}}+\mathrm{2}} \:\:+\:\:\mathrm{a}_{\boldsymbol{\mathrm{k}}+\mathrm{7}} \\ $$$$\mathrm{find}:\:\:\:\boldsymbol{\mathrm{k}}\:=\:? \\ $$ Commented by mr W…

f-x-g-x-dx-n-0-1-n-lim-h-0-1-h-n-i-o-n-1-i-n-i-n-i-f-x-n-i-h-1-n-a-x-x-t-n-g-t-dt-prove-that-right-its-a-relation-that-i-have-derrived-

Question Number 207924 by AliJumaa last updated on 31/May/24 $$\int{f}\left({x}\right){g}\left({x}\right){dx}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\left(−\mathrm{1}\right)^{{n}} \:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{h}^{{n}} }\:\underset{{i}={o}} {\overset{{n}} {\sum}}\left[\:\left(−\mathrm{1}\right)^{{i}} \left(\frac{{n}!}{{i}!\left({n}−{i}\right)!}\right){f}\left({x}+\left({n}−{i}\right){h}\right)\right]\:\frac{\mathrm{1}}{{n}!}\underset{{a}} {\overset{{x}} {\int}}\left({x}−{t}\right)^{{n}} {g}\left({t}\right){dt}\: \\ $$$${prove}\:{that}\:{right} \\ $$$${its}\:{a}\:{relation}\:{that}\:{i}\:{have}\:{derrived}…

Given-p-q-r-and-s-real-positive-numbers-such-that-p-2-q-2-r-2-s-2-p-2-s-2-ps-q-2-r-2-qr-Find-pq-rs-ps-qr-

Question Number 207920 by efronzo1 last updated on 30/May/24 $$\:\:\:\:\mathrm{Given}\:\mathrm{p},\mathrm{q}\:,\mathrm{r}\:\mathrm{and}\:\mathrm{s}\:\mathrm{real}\:\mathrm{positive}\: \\ $$$$\:\:\mathrm{numbers}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\:\:\:\:\begin{cases}{\mathrm{p}^{\mathrm{2}} +\mathrm{q}^{\mathrm{2}} =\:\mathrm{r}^{\mathrm{2}} +\mathrm{s}^{\mathrm{2}} }\\{\mathrm{p}^{\mathrm{2}} +\mathrm{s}^{\mathrm{2}} −\mathrm{ps}\:=\:\mathrm{q}^{\mathrm{2}} +\mathrm{r}^{\mathrm{2}} +\mathrm{qr}.}\end{cases} \\ $$$$\:\:\mathrm{Find}\:\:\frac{\mathrm{pq}+\mathrm{rs}}{\mathrm{ps}+\mathrm{qr}}\:. \\…

Question-207904

Question Number 207904 by Ahmed777hamouda last updated on 30/May/24 Commented by Ahmed777hamouda last updated on 30/May/24 $$\mathrm{H}{ow}\:\boldsymbol{\mathrm{prove}}\:\:\boldsymbol{\mathrm{a}}_{\boldsymbol{\mathrm{n}}} =\mathrm{2}\boldsymbol{\mathrm{I}}_{{o}} \boldsymbol{\mathrm{J}}_{{n}} \left(\boldsymbol{\mathrm{nx}}\right)\mathrm{cos}\:\left(\boldsymbol{\mathrm{n}}\theta_{\boldsymbol{\mathrm{g}}} +\boldsymbol{\mathrm{n}\theta}_{\boldsymbol{\mathrm{n}}} \right) \\ $$$$\boldsymbol{\mathrm{from}}\:\boldsymbol{\mathrm{fourier}}\:\boldsymbol{\mathrm{series}} \\…

Question-207901

Question Number 207901 by Tawa11 last updated on 29/May/24 Answered by mr W last updated on 30/May/24 $$\boldsymbol{{v}}=\frac{{d}\boldsymbol{{r}}}{{dt}}={e}^{{t}} \left(\mathrm{cos}\:{t}−\mathrm{sin}\:{t}\right)\:\boldsymbol{{i}}+{e}^{{t}} \left(\mathrm{sin}\:{t}+\:\mathrm{cos}\:{t}\right)\:\boldsymbol{{j}} \\ $$$$\boldsymbol{{a}}=\frac{{d}\boldsymbol{{v}}}{{dt}}=−\mathrm{2}{e}^{{t}} \:\mathrm{sin}\:{t}\:\boldsymbol{{i}}+\mathrm{2}{e}^{{t}} \:\mathrm{cos}\:{t}\:\boldsymbol{{j}} \\…