Menu Close

Author: Tinku Tara

what-is-domain-of-x-for-f-x-2f-1-x-x-2-

Question Number 85233 by jagoll last updated on 20/Mar/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{domain}\:\:\mathrm{of}\:\mathrm{x}\:\mathrm{for} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)+\mathrm{2f}\left(\mathrm{1}−\mathrm{x}\right)=\:\mathrm{x}^{\mathrm{2}} \\ $$ Commented by jagoll last updated on 20/Mar/20 $$\mathrm{replace}\:\mathrm{1}−\mathrm{x}\:\mathrm{by}\:\mathrm{x}\: \\ $$$$\mathrm{f}\left(\mathrm{1}−\mathrm{x}\right)+\mathrm{2f}\left(\mathrm{x}\right)\:=\:\left(\mathrm{1}−\mathrm{x}\right)^{\mathrm{2}} \:\left(\mathrm{ii}\right)…

Let-m-be-the-smallest-odd-positive-integer-for-which-1-2-m-is-a-square-of-an-integer-and-let-n-be-the-smallest-even-positive-integer-for-which-1-2-n-is-a-square-of-an-integer-What

Question Number 19696 by Tinkutara last updated on 14/Aug/17 $$\mathrm{Let}\:{m}\:\mathrm{be}\:\mathrm{the}\:\mathrm{smallest}\:\mathrm{odd}\:\mathrm{positive} \\ $$$$\mathrm{integer}\:\mathrm{for}\:\mathrm{which}\:\mathrm{1}\:+\:\mathrm{2}\:+\:…\:+\:{m}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{square}\:\mathrm{of}\:\mathrm{an}\:\mathrm{integer}\:\mathrm{and}\:\mathrm{let}\:{n}\:\mathrm{be}\:\mathrm{the} \\ $$$$\mathrm{smallest}\:\mathrm{even}\:\mathrm{positive}\:\mathrm{integer}\:\mathrm{for} \\ $$$$\mathrm{which}\:\mathrm{1}\:+\:\mathrm{2}\:+\:…\:+\:{n}\:\mathrm{is}\:\mathrm{a}\:\mathrm{square}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{integer}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{m}\:+\:{n}? \\ $$ Answered by Rasheed.Sindhi…

Question-150761

Question Number 150761 by DELETED last updated on 15/Aug/21 Answered by DELETED last updated on 15/Aug/21 $$\left.\mathrm{1}.\mathrm{a}\right).\:\left(\mathrm{NH}_{\mathrm{4}} \right)_{\mathrm{2}} \mathrm{Cr}_{\mathrm{2}} \mathrm{O}_{\mathrm{7}} \rightarrow\mathrm{N}_{\mathrm{2}} +\mathrm{4H}_{\mathrm{2}} \mathrm{O}+\mathrm{Cr}_{\mathrm{2}} \mathrm{O}_{\mathrm{3}} \\…

If-z-4-z-2-then-find-the-maximum-value-of-z-

Question Number 19690 by Tinkutara last updated on 14/Aug/17 $$\mathrm{If}\:\mid{z}\:−\:\frac{\mathrm{4}}{{z}}\mid\:=\:\mathrm{2},\:\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{maximum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mid{z}\mid. \\ $$ Answered by ajfour last updated on 15/Aug/17 $$\:\:\mid\left(\mid\mathrm{z}\mid−\frac{\mathrm{4}}{\mid\mathrm{z}\mid}\right)\mid\leqslant\mathrm{2} \\ $$$$\mathrm{let}\:\mid\mathrm{z}\mid=\mathrm{t} \\…

solve-in-N-n-4-42-n-2-

Question Number 85224 by mathocean1 last updated on 20/Mar/20 $${solve}\:{in}\:\mathbb{N} \\ $$$$\left({n}−\mathrm{4}\right)!=\mathrm{42}\left({n}−\mathrm{2}\right)! \\ $$ Commented by jagoll last updated on 20/Mar/20 $$\left(\mathrm{n}−\mathrm{4}\right)!\:=\:\mathrm{42}\left(\mathrm{n}−\mathrm{2}\right)\left(\mathrm{n}−\mathrm{3}\right)\left(\mathrm{n}−\mathrm{4}\right)! \\ $$$$\mathrm{1}\:=\:\mathrm{42}\left(\mathrm{n}−\mathrm{2}\right)\left(\mathrm{n}−\mathrm{3}\right) \\…

The-vertices-of-a-square-are-z-1-z-2-z-3-and-z-4-taken-in-the-anticlockwise-order-then-z-3-1-iz-1-1-i-z-2-2-iz-1-1-i-z-2-3-z-1-1-i-z-2-4-1-i-z-1-z-2-

Question Number 19688 by Tinkutara last updated on 14/Aug/17 $$\mathrm{The}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{a}\:\mathrm{square}\:\mathrm{are}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \\ $$$$\mathrm{and}\:{z}_{\mathrm{4}} \:\mathrm{taken}\:\mathrm{in}\:\mathrm{the}\:\mathrm{anticlockwise}\:\mathrm{order}, \\ $$$$\mathrm{then}\:{z}_{\mathrm{3}} \:= \\ $$$$\left(\mathrm{1}\right)\:−{iz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:+\:{i}\right){z}_{\mathrm{2}} \\ $$$$\left(\mathrm{2}\right)\:{iz}_{\mathrm{1}} \:+\:\left(\mathrm{1}\:+\:{i}\right){z}_{\mathrm{2}} \\…

In-C-What-is-the-sections-doing-and-What-is-the-output-from-the-sections-below-a-int-p-o-for-int-i-1-i-lt-30-i-if-i-5-0-p-i-cout-lt-lt-p-lt-lt

Question Number 85222 by Umar last updated on 20/Mar/20 $$\mathrm{In}\:\mathrm{C}++ \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sections}\:\mathrm{doing}\:?\:\mathrm{and} \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{output}\:\mathrm{from}\:\mathrm{the}\:\mathrm{sections}\: \\ $$$$\mathrm{below}\:? \\ $$$$\mathrm{a}.\:\mathrm{int}\:\mathrm{p}=\mathrm{o}; \\ $$$$\:\:\:\:\:\mathrm{for}\:\left(\mathrm{int}\:\mathrm{i}=\mathrm{1};\:\mathrm{i}<=\mathrm{30};\:\mathrm{i}++\right)\left\{\right. \\ $$$$\:\:\:\:\:\mathrm{if}\:\left(\mathrm{i\%5}==\mathrm{0}\right) \\ $$$$\:\:\:\:\:\:\mathrm{p}+=\mathrm{i};\:\: \\…

Let-z-1-z-2-z-3-be-three-vertices-of-an-equilateral-triangle-circumscribing-the-circle-z-1-2-If-z-1-1-2-3-i-2-and-z-1-z-2-z-3-are-in-anticlockwise-sense-then-z-2-is-

Question Number 19687 by Tinkutara last updated on 14/Aug/17 $$\mathrm{Let}\:{z}_{\mathrm{1}} ,\:{z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{be}\:\mathrm{three}\:\mathrm{vertices}\:\mathrm{of}\:\mathrm{an} \\ $$$$\mathrm{equilateral}\:\mathrm{triangle}\:\mathrm{circumscribing}\:\mathrm{the} \\ $$$$\mathrm{circle}\:\mid{z}\mid\:=\:\frac{\mathrm{1}}{\mathrm{2}}.\:\mathrm{If}\:{z}_{\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{2}}\:+\:\frac{\sqrt{\mathrm{3}}{i}}{\mathrm{2}}\:\mathrm{and}\:{z}_{\mathrm{1}} , \\ $$$${z}_{\mathrm{2}} ,\:{z}_{\mathrm{3}} \:\mathrm{are}\:\mathrm{in}\:\mathrm{anticlockwise}\:\mathrm{sense}\:\mathrm{then}\:{z}_{\mathrm{2}} \:\mathrm{is} \\…

lim-x-0-log-e-x-1-x-please-help-

Question Number 150759 by nimnim last updated on 15/Aug/21 $$\:\:\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{log}\left({e}+{x}\right)−\mathrm{1}}{{x}}=? \\ $$$${please}\:{help}.. \\ $$ Answered by Olaf_Thorendsen last updated on 15/Aug/21 $$\frac{\mathrm{ln}\left({e}+{x}\right)−\mathrm{1}}{{x}}\:=\:\frac{\mathrm{ln}{e}+\mathrm{ln}\left(\mathrm{1}+\frac{{x}}{{e}}\right)−\mathrm{1}}{{x}} \\ $$$$=\:\frac{\mathrm{ln}\left(\mathrm{1}+\frac{{x}}{{e}}\right)}{{x}}\:\underset{\mathrm{0}}…