Menu Close

Author: Tinku Tara

Two-swimmers-leave-point-A-on-one-bank-of-the-river-to-reach-point-B-lying-right-across-the-other-bank-One-of-them-crosses-the-river-along-the-straight-line-AB-while-the-other-swims-at-right-angle-to

Question Number 19654 by Tinkutara last updated on 13/Aug/17 $$\mathrm{Two}\:\mathrm{swimmers}\:\mathrm{leave}\:\mathrm{point}\:{A}\:\mathrm{on}\:\mathrm{one} \\ $$$$\mathrm{bank}\:\mathrm{of}\:\mathrm{the}\:\mathrm{river}\:\mathrm{to}\:\mathrm{reach}\:\mathrm{point}\:{B}\:\mathrm{lying} \\ $$$$\mathrm{right}\:\mathrm{across}\:\mathrm{the}\:\mathrm{other}\:\mathrm{bank}.\:\mathrm{One}\:\mathrm{of} \\ $$$$\mathrm{them}\:\mathrm{crosses}\:\mathrm{the}\:\mathrm{river}\:\mathrm{along}\:\mathrm{the}\:\mathrm{straight} \\ $$$$\mathrm{line}\:{AB}\:\mathrm{while}\:\mathrm{the}\:\mathrm{other}\:\mathrm{swims}\:\mathrm{at}\:\mathrm{right} \\ $$$$\mathrm{angle}\:\mathrm{to}\:\mathrm{the}\:\mathrm{stream}\:\mathrm{and}\:\mathrm{then}\:\mathrm{walks}\:\mathrm{the} \\ $$$$\mathrm{distance}\:\mathrm{that}\:\mathrm{he}\:\mathrm{has}\:\mathrm{been}\:\mathrm{carried}\:\mathrm{away} \\ $$$$\mathrm{by}\:\mathrm{the}\:\mathrm{stream}\:\mathrm{to}\:\mathrm{get}\:\mathrm{to}\:\mathrm{point}\:{B}.\:\mathrm{What} \\…

Serlea-Shows-that-the-sum-of-the-digit-of-100-25-25-is-divisible-by-4-

Question Number 85184 by Serlea last updated on 19/Mar/20 $$\mathrm{Serlea} \\ $$$$\mathrm{Shows}\:\mathrm{that}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{digit}\:\mathrm{of} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{100}^{\mathrm{25}} −\mathrm{25} \\ $$$$\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{4}. \\ $$ Commented by mr W last updated…

Hi-veterans-Serlea-1-Find-the-last-three-digits-of-3005-11-3005-12-3005-13-3005-3002-

Question Number 85183 by Serlea last updated on 19/Mar/20 $$\mathrm{Hi}\:\mathrm{veterans} \\ $$$$\mathrm{Serlea}\:\left(\mathrm{1}\right) \\ $$$$ \\ $$$$\mathrm{Find}\:\mathrm{the}\:\mathrm{last}\:\mathrm{three}\:\mathrm{digits}\:\mathrm{of}: \\ $$$$\mathrm{3005}^{\mathrm{11}} +\mathrm{3005}^{\mathrm{12}} +\mathrm{3005}^{\mathrm{13}} +…+\mathrm{3005}^{\mathrm{3002}} \\ $$$$ \\ $$$$…

Find-the-sum-of-all-possible-digits-that-comes-at-ten-s-place-for-3-n-where-n-is-any-natural-number-

Question Number 19646 by Tinkutara last updated on 13/Aug/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{all}\:\mathrm{possible}\:\mathrm{digits}\:\mathrm{that} \\ $$$$\mathrm{comes}\:\mathrm{at}\:\mathrm{ten}'\mathrm{s}\:\mathrm{place}\:\mathrm{for}\:\mathrm{3}^{{n}} \:\mathrm{where}\:{n}\:\mathrm{is} \\ $$$$\mathrm{any}\:\mathrm{natural}\:\mathrm{number}. \\ $$ Commented by Tinkutara last updated on 16/Aug/17 $$\mathrm{help}\:\mathrm{pls}…

Calculate-Li-2-z-Li-2-1-z-

Question Number 150718 by mathdanisur last updated on 14/Aug/21 $$\mathrm{Calculate}: \\ $$$$\mathrm{Li}_{\mathrm{2}} \left(\boldsymbol{\mathrm{z}}\right)\:+\:\mathrm{Li}_{\mathrm{2}} \left(\mathrm{1}\:-\:\boldsymbol{\mathrm{z}}\right)\:=\:? \\ $$ Answered by Olaf_Thorendsen last updated on 14/Aug/21 $$\mathrm{Li}\left({z}\right)\:=\:−\int_{\mathrm{0}} ^{{z}}…

Find-the-real-solution-of-the-equation-17-8x-2x-2-4-12x-3x-2-x-2-4x-13-

Question Number 19643 by Tinkutara last updated on 13/Aug/17 $$\mathrm{Find}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\sqrt{\mathrm{17}\:+\:\mathrm{8}{x}\:−\:\mathrm{2}{x}^{\mathrm{2}} }\:+\:\sqrt{\mathrm{4}\:+\:\mathrm{12}{x}\:−\:\mathrm{3}{x}^{\mathrm{2}} }\:=\:{x}^{\mathrm{2}} \\ $$$$−\:\mathrm{4}{x}\:+\:\mathrm{13}. \\ $$ Answered by ajfour last updated on 13/Aug/17…

what-is-range-function-y-x-1-5-x-

Question Number 85176 by jagoll last updated on 19/Mar/20 $$\mathrm{what}\:\mathrm{is}\:\mathrm{range}\: \\ $$$$\mathrm{function}\:\mathrm{y}\:=\:\sqrt{\mathrm{x}−\mathrm{1}}\:+\:\sqrt{\mathrm{5}−\mathrm{x}} \\ $$ Answered by john santu last updated on 19/Mar/20 $$\mathrm{Domain}\::\:\mathrm{x}\:\geqslant\:\mathrm{1}\:\wedge\:\mathrm{x}\:\leqslant\:\mathrm{5}\:\Rightarrow\:\mathrm{1}\:\leqslant\mathrm{x}\leqslant\mathrm{5} \\ $$$$\mathrm{Range}\::\:\mathrm{y}\:'\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}−\mathrm{1}}}\:−\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}−\mathrm{x}}}\:=\:\mathrm{0}…