Question Number 19638 by Tinkutara last updated on 13/Aug/17 $$\mathrm{Let}\:{P}\left({x}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial}\:\mathrm{such}\:\mathrm{that} \\ $$$${P}\left(\mathrm{1}\right)\:=\:\mathrm{1},\:{P}\left(\mathrm{2}\right)\:=\:\mathrm{2},\:{P}\left(\mathrm{3}\right)\:=\:\mathrm{3},\:\mathrm{and} \\ $$$${P}\left(\mathrm{4}\right)\:=\:\mathrm{5}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:{P}\left(\mathrm{6}\right). \\ $$ Answered by ajfour last updated on 13/Aug/17 $$\mathrm{let}\:\mathrm{P}\left(\mathrm{x}\right)=\mathrm{ax}^{\mathrm{3}} +\mathrm{bx}^{\mathrm{2}}…
Question Number 19637 by Tinkutara last updated on 13/Aug/17 $$\mathrm{Determine}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{five}-\mathrm{digit} \\ $$$$\mathrm{integers}\:\left(\mathrm{37}{abc}\right)\:\mathrm{in}\:\mathrm{base}\:\mathrm{10}\:\mathrm{such}\:\mathrm{that} \\ $$$$\mathrm{each}\:\mathrm{of}\:\mathrm{the}\:\mathrm{numbers}\:\left(\mathrm{37}{abc}\right),\:\left(\mathrm{37}{bca}\right) \\ $$$$\mathrm{and}\:\mathrm{37}{cab}\:\mathrm{is}\:\mathrm{divisible}\:\mathrm{by}\:\mathrm{37}. \\ $$ Answered by Rasheed.Sindhi last updated on 14/Aug/17…
Question Number 19634 by Tinkutara last updated on 13/Aug/17 $$\mathrm{How}\:\mathrm{many}\:\mathrm{ordered}\:\mathrm{triplets}\:\left({x},\:{y},\:{z}\right)\:\mathrm{of} \\ $$$$\mathrm{positive}\:\mathrm{integer}\:\mathrm{satisfy}\:\mathrm{lcm}\left({x},\:{y}\right)\:=\:\mathrm{72}, \\ $$$$\mathrm{lcm}\left({x},\:{z}\right)\:=\:\mathrm{600}\:\mathrm{and}\:\mathrm{lcm}\left({y},\:{z}\right)\:=\:\mathrm{900}? \\ $$ Answered by Tinkutara last updated on 16/Oct/17 Terms of…
Question Number 85169 by jagoll last updated on 19/Mar/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{n}^{\mathrm{th}} \:\mathrm{derivative}\:\mathrm{of}\:\mathrm{function} \\ $$$$\mathrm{y}\:=\:\sqrt{\mathrm{sin}\:\mathrm{x}}\:\mathrm{by}\:\mathrm{Leibniz}\:\mathrm{theorem} \\ $$ Commented by mr W last updated on 19/Mar/20 $${i}\:{don}'{t}\:{think}\:{Leibniz}\:{theorem}\:{helps} \\…
Question Number 85166 by mathmax by abdo last updated on 19/Mar/20 $${find}\:\int\:\:\left({x}^{\mathrm{2}} −\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} \:+\mathrm{1}}{dx} \\ $$ Commented by john santu last updated on 21/Mar/20 $$\mathrm{let}\:\mathrm{K}\:=\:\int\:\mathrm{x}^{\mathrm{2}}…
Question Number 19631 by Tinkutara last updated on 13/Aug/17 $$\mathrm{Two}\:\mathrm{different}\:\mathrm{prime}\:\mathrm{numbers}\:\mathrm{between} \\ $$$$\mathrm{4}\:\mathrm{and}\:\mathrm{18}\:\mathrm{are}\:\mathrm{chosen}.\:\mathrm{When}\:\mathrm{their}\:\mathrm{sum}\:\mathrm{is} \\ $$$$\mathrm{subtracted}\:\mathrm{from}\:\mathrm{their}\:\mathrm{product}\:\mathrm{then}\:\mathrm{a} \\ $$$$\mathrm{number}\:{x}\:\mathrm{is}\:\mathrm{obtained}\:\mathrm{which}\:\mathrm{is}\:\mathrm{a} \\ $$$$\mathrm{multiple}\:\mathrm{of}\:\mathrm{17}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{digits}\:\mathrm{of} \\ $$$$\mathrm{number}\:{x}. \\ $$ Answered by ajfour…
Question Number 85167 by mathmax by abdo last updated on 19/Mar/20 $${let}\:\varphi\left({x}\right)=\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)\:\:{find}\:\int_{\frac{\mathrm{1}}{\mathrm{3}}} ^{\frac{\mathrm{1}}{\mathrm{2}}} {ln}\left(\varphi\left({x}\right)\right){dx} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 85164 by mathmax by abdo last updated on 19/Mar/20 $${calculate}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{arctan}\left(\frac{\mathrm{1}}{{n}^{\mathrm{2}} \:+{n}+\mathrm{1}}\right) \\ $$ Commented by Cmr 237 last updated on 19/Mar/20…
Question Number 19629 by Tinkutara last updated on 13/Aug/17 $$\mathrm{If}\:\mid{z}\mid\:=\:\mathrm{2},\:\mathrm{then}\:\mathrm{the}\:\mathrm{points}\:\mathrm{representing} \\ $$$$\mathrm{the}\:\mathrm{complex}\:\mathrm{numbers}\:−\mathrm{1}\:+\:\mathrm{5}{z}\:\mathrm{will}\:\mathrm{lie} \\ $$$$\mathrm{on}\:\mathrm{a} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Circle} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Straight}\:\mathrm{line} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Parabola} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Ellipse} \\ $$ Answered…
Question Number 85165 by mathmax by abdo last updated on 19/Mar/20 $${sove}\:\:\left({sin}^{\mathrm{2}} {x}\right)\:{y}^{'} \:\:+\left({cosx}\right){y}\:={x} \\ $$ Commented by mathmax by abdo last updated on 20/Mar/20…