Question Number 150670 by EDWIN88 last updated on 14/Aug/21 $$\:{Solve}\:{the}\:{equation}\: \\ $$$$\:\mathrm{sin}\:^{\mathrm{3}} {x}+\mathrm{sin}\:^{\mathrm{3}} \left(\frac{\mathrm{2}\pi}{\mathrm{3}}+{x}\right)+\mathrm{sin}\:^{\mathrm{3}} \left(\frac{\mathrm{4}\pi}{\mathrm{3}}+{x}\right)+\frac{\mathrm{3}}{\mathrm{4}}\mathrm{cos}\:\mathrm{2}{x}=\mathrm{0}\: \\ $$ Answered by EDWIN88 last updated on 14/Aug/21 Answered…
Question Number 85130 by john santu last updated on 19/Mar/20 $$\mathrm{given}\:\mathrm{f}\left(\mathrm{x}\right)=\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\mathrm{sin}\:\mathrm{x}\:+\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\mathrm{cos}\:\mathrm{x} \\ $$$$\mathrm{find}\:\mathrm{masimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{function} \\ $$$$\left[\mathrm{f}\left(\mathrm{x}\right)\right]^{\mathrm{2}} \\ $$ Answered by Rio Michael last updated on 19/Mar/20…
Question Number 19595 by khamizan833@yahoo.com last updated on 13/Aug/17 $$\mathrm{For}\:{x}\:\in\:\mathrm{R},\:\mathrm{solve}\:\mathrm{the}\:\mathrm{equation}\:\mathrm{below}! \\ $$$$\left(\mathrm{2}^{{x}} \:−\:\mathrm{4}\right)^{\mathrm{3}} \:+\:\left(\mathrm{4}^{{x}} \:−\:\mathrm{2}\right)^{\mathrm{3}} \:=\:\left(\mathrm{4}^{{x}} \:+\:\mathrm{2}^{{x}} \:−\:\mathrm{6}\right)^{\mathrm{3}} \\ $$ Commented by khamizan833@yahoo.com last updated…
Question Number 85131 by Rio Michael last updated on 19/Mar/20 $$\mathrm{what}\:\mathrm{procedure}\:\mathrm{will}\:\mathrm{you}\:\mathrm{use}\:\mathrm{to}\: \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{inverse}\:\mathrm{of} \\ $$$$\:\mathrm{A}\:=\:\begin{pmatrix}{\mathrm{2}}&{\mathrm{1}}&{\mathrm{9}}\\{\mathrm{1}}&{\mathrm{5}}&{\mathrm{1}}\\{\mathrm{3}}&{\mathrm{0}}&{\mathrm{3}}\end{pmatrix} \\ $$ Commented by jagoll last updated on 19/Mar/20 $$\left(\mathrm{1}\right)\:\mathrm{find}\:\mid\mathrm{A}\mid\:…
Question Number 85129 by Rio Michael last updated on 19/Mar/20 $$\underset{{x}\rightarrow{e}} {\mathrm{lim}}\:\left[\underset{\mathrm{0}} {\overset{{e}} {\int}}\left(\frac{\mathrm{1}}{{x}}\right){dx}\right]\:=? \\ $$ Commented by john santu last updated on 19/Mar/20 $$\int\:_{\mathrm{0}}…
Question Number 19592 by ajfour last updated on 13/Aug/17 Commented by Tinkutara last updated on 13/Aug/17 $${z}_{{F}} \:=\:\frac{{ab}^{\mathrm{2}} }{{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} }\:+\:{i}\frac{{a}^{\mathrm{2}} {b}}{{a}^{\mathrm{2}} \:+\:{b}^{\mathrm{2}} } \\…
Question Number 150661 by Jamshidbek last updated on 14/Aug/21 $$\mathrm{sin9x}=\mathrm{sim5x}+\mathrm{sin3x}\:\:\:\mathrm{help}\: \\ $$ Commented by MJS_new last updated on 15/Aug/21 $$\mathrm{what}\:\mathrm{are}\:\mathrm{we}\:\mathrm{allowed}\:\mathrm{to}\:\mathrm{do}? \\ $$$$\mathrm{the}\:\mathrm{solutions}\:\mathrm{for}\:\mathrm{0}\leqslant{x}<\mathrm{2}\pi\:\mathrm{are}\:{x}_{\mathrm{1}} =\mathrm{0}\:\left(\mathrm{obviously}\right) \\ $$$$\mathrm{and}\:{x}=\frac{\left(\mathrm{2}{n}+\mathrm{1}\right)\pi}{\mathrm{30}}\:\mathrm{for}\:\mathrm{some}\:{n},\:\mathrm{not}\:\mathrm{for}\:\mathrm{all}.…
Question Number 85127 by Rio Michael last updated on 19/Mar/20 $$\mathrm{evaluate}: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\sqrt{{x}}\:\mathrm{ln}\left(\mathrm{sin}\:{x}\right) \\ $$$$ \\ $$ Commented by john santu last updated on…
Question Number 19589 by gourav~ last updated on 13/Aug/17 $${Let}\:{A}\:{and}\:{B}\:{is}\:\mathrm{3}×\mathrm{3}\:{matrix}\:{of}\:{equal}\:{number} \\ $$$${where}\:{A}={symmetric}\:{matrix}\: \\ $$$$….{B}={skew}\:{symmetric}\:{matrix} \\ $$$${and}\:{the}\:{relation}…\:\left({A}+{B}\right)\left({A}−{B}\right)=\left({A}−{B}\right)\left({A}+{B}\right) \\ $$$${then}..{the}\:{value}\:{of}..\:…\:{k} \\ $$$$\:\:\:\:\left({AB}\right)^{{T}} =\left(−\mathrm{1}\right)^{{k}} \left({AB}\right) \\ $$$$\left({a}\right)\:−\mathrm{1}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left({c}\right)\:\mathrm{2} \\…
Question Number 19588 by richard last updated on 13/Aug/17 Terms of Service Privacy Policy Contact: info@tinkutara.com