Question Number 150656 by mnjuly1970 last updated on 14/Aug/21 Answered by Ar Brandon last updated on 14/Aug/21 $$\Omega=\frac{\mathrm{1}}{\mathrm{2}}\left(\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)+\Gamma\left(\mathrm{1}\right)+\Gamma\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\right) \\ $$$$\:\:\:\:=\frac{\mathrm{1}}{\mathrm{2}}\left(\sqrt{\pi}+\mathrm{1}+\frac{\sqrt{\pi}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{3}\sqrt{\pi}+\mathrm{2}\right) \\ $$ Commented by mnjuly1970…
Question Number 19586 by ajfour last updated on 13/Aug/17 $$\mathrm{Given}\:\mathrm{in}\:\mathrm{an}\:\mathrm{isosceles}\:\mathrm{triangle}\:\mathrm{a} \\ $$$$\mathrm{lateral}\:\mathrm{side}\:\mathrm{b}\:\mathrm{and}\:\mathrm{the}\:\mathrm{base}\:\mathrm{angle}\:\alpha. \\ $$$$\mathrm{Compute}\:\mathrm{the}\:\mathrm{distance}\:\mathrm{from}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{inscribed}\:\mathrm{circle}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{circumscribed}\:\mathrm{circle}. \\ $$ Commented by Tinkutara last updated…
Question Number 150652 by mathdanisur last updated on 14/Aug/21 $$\mathrm{If}\:\:\:\mathrm{f}\left(\mathrm{3x}+\mathrm{1}\right)+\mathrm{f}\left(\mathrm{5x}+\mathrm{1}\right)=\mathrm{x}^{\mathrm{3}} -\mathrm{2} \\ $$$$\mathrm{Find}\:\:\mathrm{f}\left(\mathrm{1}\right)+\mathrm{f}\left(\mathrm{4}\right)+\mathrm{f}\left(\mathrm{16}\right)=? \\ $$ Commented by MJS_new last updated on 14/Aug/21 $${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{152}}\left({x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}−\mathrm{153}\right)…
Question Number 150655 by mnjuly1970 last updated on 14/Aug/21 Answered by Ar Brandon last updated on 14/Aug/21 $$\mathrm{I}=\int_{\mathrm{0}} ^{\infty} \frac{{e}^{−\sqrt{{x}}} \mathrm{ln}\left(\sqrt{{x}}\right)}{{x}^{\frac{\mathrm{1}}{\mathrm{4}}} }{dx}\underset{{x}={u}^{\mathrm{2}} } {=}\mathrm{2}\int_{\mathrm{0}} ^{\infty}…
Question Number 85116 by niroj last updated on 19/Mar/20 $$\:\mathrm{Reduce}\:\mathrm{the}\:\mathrm{equations}\:\mathrm{to}\:\mathrm{Clairaut}'\mathrm{s}\:\mathrm{form} \\ $$$$\:\mathrm{and}\:\mathrm{find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:: \\ $$$$\:\boldsymbol{\mathrm{x}}^{\mathrm{2}} \boldsymbol{\mathrm{p}}^{\mathrm{2}} +\boldsymbol{\mathrm{yp}}\left(\mathrm{2}\boldsymbol{\mathrm{x}}+\boldsymbol{\mathrm{y}}\right)+\boldsymbol{\mathrm{y}}^{\mathrm{2}} =\mathrm{0}\:\:\:\:\:\:\left({put}\:\boldsymbol{{y}}=\boldsymbol{{u}}\:{and}\:\boldsymbol{{xy}}=\boldsymbol{{v}}\right) \\ $$$$\: \\ $$ Commented by MJS last…
Question Number 150654 by mnjuly1970 last updated on 14/Aug/21 Answered by Ar Brandon last updated on 14/Aug/21 $${S}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{{n}} \left(\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3}{n}+\mathrm{2}}\right) \\…
Question Number 85111 by niroj last updated on 19/Mar/20 $$\:\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{differential}}\:\boldsymbol{\mathrm{equation}}: \\ $$$$\:\bigstar.\left(\mathrm{1}+\mathrm{x}+\mathrm{xy}^{\mathrm{2}} \right)\mathrm{dy}+\left(\mathrm{y}+\mathrm{y}^{\mathrm{3}} \right)\mathrm{dx} \\ $$$$\: \\ $$ Commented by jagoll last updated on 19/Mar/20…
Question Number 19574 by Tinkutara last updated on 12/Aug/17 $$\mathrm{Carol}\:\mathrm{was}\:\mathrm{given}\:\mathrm{three}\:\mathrm{numbers}\:\mathrm{and} \\ $$$$\mathrm{was}\:\mathrm{asked}\:\mathrm{to}\:\mathrm{add}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{three}\:\mathrm{to}\:\mathrm{the}\:\mathrm{product}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{two}. \\ $$$$\mathrm{Instead},\:\mathrm{she}\:\mathrm{multiplied}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{with} \\ $$$$\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{other}\:\mathrm{two},\:\mathrm{but}\:\mathrm{still}\:\mathrm{got} \\ $$$$\mathrm{the}\:\mathrm{right}\:\mathrm{answer}.\:\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of} \\ $$$$\mathrm{the}\:\mathrm{three}\:\mathrm{numbers}? \\ $$ Commented…
Question Number 150647 by puissant last updated on 14/Aug/21 Answered by puissant last updated on 14/Aug/21 $${posons}\:\:{I}_{\mathrm{2}{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sint}\right)^{\mathrm{2}{n}} {dt} \\ $$$$=\frac{\mathrm{1}×\mathrm{3}×\mathrm{5}……×\left(\mathrm{2}{n}−\mathrm{1}\right)}{\mathrm{2}×\mathrm{4}×\mathrm{6}×…..×\mathrm{2}{n}}×\frac{\pi}{\mathrm{2}} \\ $$$$\Rightarrow\:\:{I}_{\mathrm{2}{n}}…
Question Number 150646 by mathdanisur last updated on 14/Aug/21 $$\boldsymbol{\mathrm{L}}\mathrm{et}\:\boldsymbol{\lambda}\in\mathbb{R}\:\mathrm{fixed}.\boldsymbol{\mathrm{S}}\mathrm{olve}\:\mathrm{for}\:\mathrm{real}\:\mathrm{numbers}: \\ $$$$\begin{cases}{\mathrm{ax}\:+\:\mathrm{by}\:=\:\mathrm{2}\lambda\:+\:\mathrm{1}}\\{\mathrm{ax}^{\mathrm{2}} \:+\:\mathrm{by}^{\mathrm{2}} \:=\:\mathrm{4}\lambda\:+\:\mathrm{1}}\\{\mathrm{ax}^{\mathrm{3}} \:+\:\mathrm{by}^{\mathrm{3}} \:=\:\mathrm{8}\lambda\:+\:\mathrm{1}}\\{\mathrm{ax}^{\mathrm{4}} \:+\:\mathrm{by}^{\mathrm{4}} \:=\:\mathrm{16}\lambda\:+\:\mathrm{1}}\end{cases} \\ $$ Answered by MJS_new last updated…