Menu Close

Author: Tinku Tara

Prove-or-disprove-the-foolowing-n-1-1-n-2-n-2-2-e-n-2-x-n-1-e-n-2-x-

Question Number 150539 by mathdanisur last updated on 13/Aug/21 $$\mathrm{Prove}\:\mathrm{or}\:\mathrm{disprove}\:\mathrm{the}\:\mathrm{foolowing}: \\ $$$$\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\left(−\mathrm{1}\right)^{\frac{\boldsymbol{\mathrm{n}}^{\mathrm{2}} +\boldsymbol{\mathrm{n}}+\mathrm{2}}{\mathrm{2}}} \:\mathrm{e}^{−\boldsymbol{\pi\mathrm{n}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \:=\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{e}^{−\boldsymbol{\pi\mathrm{n}}^{\mathrm{2}} \boldsymbol{\mathrm{x}}} \\ $$ Answered by…

Find-x-y-x-Q-and-y-Z-such-that-2020-x-2-y-2-2019-x-y-2021xy-

Question Number 150531 by mathdanisur last updated on 13/Aug/21 $$\mathrm{Find}\:\:\mathrm{x};\mathrm{y}\:\:;\:\:\mathrm{x}\in\mathrm{Q}\:\:\mathrm{and}\:\:\mathrm{y}\in\mathrm{Z}\:\:\mathrm{such}\:\mathrm{that}: \\ $$$$\mathrm{2020}\left(\mathrm{x}^{\mathrm{2}} \:+\:\mathrm{y}^{\mathrm{2}} \right)\:+\:\mathrm{2019}\left(\mathrm{x}\:+\:\mathrm{y}\right)\:=\:\mathrm{2021xy} \\ $$ Commented by Rasheed.Sindhi last updated on 14/Aug/21 $$\underset{\smile} {\overset{\frown}…

100-apples-should-be-packed-in-three-boxes-and-each-box-should-contain-at-least-10-apples-in-how-many-ways-can-this-be-done-

Question Number 84993 by mr W last updated on 18/Mar/20 $$\mathrm{100}\:{apples}\:{should}\:{be}\:{packed}\:{in}\:{three} \\ $$$${boxes}\:{and}\:{each}\:{box}\:{should}\:{contain} \\ $$$${at}\:{least}\:\mathrm{10}\:{apples}.\:{in}\:{how}\:{many}\:{ways} \\ $$$${can}\:{this}\:{be}\:{done}? \\ $$ Commented by john santu last updated…

Prove-that-if-z-cos-6-i-sin-6-then-1-z-2-1-iz-z-4-1-iz-3-z-8-1-iz-7-z-16-1-0-

Question Number 19455 by Tinkutara last updated on 11/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mathrm{if}\:{z}\:=\:\mathrm{cos}\:\mathrm{6}°\:+\:{i}\:\mathrm{sin}\:\mathrm{6}°,\:\mathrm{then} \\ $$$$\frac{\mathrm{1}}{{z}^{\mathrm{2}} \:+\:\mathrm{1}}\:−\:\frac{{iz}}{{z}^{\mathrm{4}} \:−\:\mathrm{1}}\:+\:\frac{{iz}^{\mathrm{3}} }{{z}^{\mathrm{8}} \:−\:\mathrm{1}}\:+\:\frac{{iz}^{\mathrm{7}} }{{z}^{\mathrm{16}} \:−\:\mathrm{1}}\:=\:\mathrm{0}. \\ $$ Answered by ajfour last updated…

x-x-3-x-9-8-1-3-2x-x-3-3x-1-3-

Question Number 150527 by Jamshidbek last updated on 13/Aug/21 $$\sqrt[{\mathrm{3}}]{\mathrm{x}\left(\mathrm{x}−\mathrm{3}\right)\left(\mathrm{x}−\mathrm{9}\right)−\mathrm{8}}=\mathrm{2x}+\sqrt[{\mathrm{3}}]{\mathrm{x}^{\mathrm{3}} −\mathrm{3x}} \\ $$ Answered by MJS_new last updated on 13/Aug/21 $$\mathrm{trying}\:\mathrm{something}\:\mathrm{weird}: \\ $$$$\mathrm{assuming}\:\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −\mathrm{3}{x}}={y}\in\mathbb{R} \\…