Menu Close

Author: Tinku Tara

Two-blocks-are-placed-on-a-smooth-horizontal-surface-and-connected-by-a-string-pulley-arrangement-as-shown-If-a-force-F-starts-acting-on-block-m-1-then-find-the-relation-between-acceleration-of-bot

Question Number 19355 by Tinkutara last updated on 10/Aug/17 $$\mathrm{Two}\:\mathrm{blocks}\:\mathrm{are}\:\mathrm{placed}\:\mathrm{on}\:\mathrm{a}\:\mathrm{smooth} \\ $$$$\mathrm{horizontal}\:\mathrm{surface}\:\mathrm{and}\:\mathrm{connected}\:\mathrm{by}\:\mathrm{a} \\ $$$$\mathrm{string}\:\mathrm{pulley}\:\mathrm{arrangement}\:\mathrm{as}\:\mathrm{shown}. \\ $$$$\mathrm{If}\:\mathrm{a}\:\mathrm{force}\:{F}\:\mathrm{starts}\:\mathrm{acting}\:\mathrm{on}\:\mathrm{block}\:{m}_{\mathrm{1}} , \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{relation}\:\mathrm{between}\:\mathrm{acceleration} \\ $$$$\mathrm{of}\:\mathrm{both}\:\mathrm{masses}\:\mathrm{and}\:\mathrm{their}\:\mathrm{values} \\ $$ Commented by…

Prove-that-z-1-z-2-2-z-1-2-z-2-2-2-z-1-z-2-cos-1-2-

Question Number 19352 by Tinkutara last updated on 10/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mid{z}_{\mathrm{1}} \:−\:{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:=\:\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \:+\:\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \\ $$$$−\:\mathrm{2}\mid{z}_{\mathrm{1}} \mid\:\mid{z}_{\mathrm{2}} \mid\:\mathrm{cos}\:\left(\theta_{\mathrm{1}} \:−\:\theta_{\mathrm{2}} \right) \\ $$ Answered…

Prove-that-z-1-z-2-2-z-1-2-z-2-2-z-1-z-2-is-purely-imaginary-number-

Question Number 19351 by Tinkutara last updated on 10/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mid{z}_{\mathrm{1}} \:+\:{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:=\:\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \:+\:\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:\Leftrightarrow \\ $$$$\frac{{z}_{\mathrm{1}} }{{z}_{\mathrm{2}} }\:\mathrm{is}\:\mathrm{purely}\:\mathrm{imaginary}\:\mathrm{number}. \\ $$ Commented by…

Question-84884

Question Number 84884 by bshahid010@gmail.com last updated on 17/Mar/20 Commented by mathmax by abdo last updated on 17/Mar/20 $${A}\:=\int\:\:\frac{{dx}}{\left(\mathrm{2}{x}−\mathrm{1}\right)\sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{3}}}\:{changement}\:\mathrm{2}{x}−\mathrm{1}={t}\:{give}\:{x}=\frac{{t}+\mathrm{1}}{\mathrm{2}} \\ $$$${A}\:=\int\:\:\frac{{dt}}{\mathrm{2}{t}\sqrt{\frac{\left({t}+\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{4}}+\frac{{t}+\mathrm{1}}{\mathrm{2}}+\mathrm{3}}}\:=\int\:\:\frac{{dt}}{\mathrm{2}{t}\sqrt{\frac{{t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{1}+\mathrm{2}{t}+\mathrm{2}+\mathrm{12}}{\mathrm{4}}}} \\…