Menu Close

Author: Tinku Tara

Parallel-tangents-to-a-circle-at-A-and-B-are-cut-in-the-points-C-and-D-by-a-tangent-to-the-circle-at-E-Prove-that-AD-BC-and-the-line-joining-the-middle-points-of-AE-and-BE-are-concurrent-

Question Number 19321 by ajfour last updated on 09/Aug/17 $$\mathrm{Parallel}\:\mathrm{tangents}\:\mathrm{to}\:\mathrm{a}\:\mathrm{circle}\:\mathrm{at}\:\mathrm{A} \\ $$$$\mathrm{and}\:\mathrm{B}\:\mathrm{are}\:\mathrm{cut}\:\mathrm{in}\:\mathrm{the}\:\mathrm{points}\:\mathrm{C}\:\mathrm{and}\:\mathrm{D} \\ $$$$\mathrm{by}\:\mathrm{a}\:\mathrm{tangent}\:\mathrm{to}\:\mathrm{the}\:\mathrm{circle}\:\mathrm{at}\:\mathrm{E}. \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{AD},\:\mathrm{BC}\:\mathrm{and}\:\mathrm{the}\:\mathrm{line} \\ $$$$\mathrm{joining}\:\mathrm{the}\:\mathrm{middle}\:\mathrm{points}\:\mathrm{of}\:\mathrm{AE} \\ $$$$\mathrm{and}\:\mathrm{BE}\:\mathrm{are}\:\mathrm{concurrent}. \\ $$ Commented by ajfour…

Prove-that-z-1-z-2-2-z-2-2-z-1-2-2Re-z-1-z-2-z-1-2-z-2-2-2Re-z-1-z-2-

Question Number 19313 by Tinkutara last updated on 09/Aug/17 $$\mathrm{Prove}\:\mathrm{that}\:\mid{z}_{\mathrm{1}} \:\pm\:{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:=\:\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}} \:+\:\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \:\pm \\ $$$$\mathrm{2Re}\left({z}_{\mathrm{1}} \bar {{z}}_{\mathrm{2}} \right)\:=\:\mid{z}_{\mathrm{1}} \mid^{\mathrm{2}} \:+\:\mid{z}_{\mathrm{2}} \mid^{\mathrm{2}}…

Product-of-n-n-th-roots-of-unity-1-2-3-n-1-1-n-1-Why-How-to-get-RHS-

Question Number 19312 by Tinkutara last updated on 09/Aug/17 $$\mathrm{Product}\:\mathrm{of}\:{n},\:{n}^{\mathrm{th}} \:\mathrm{roots}\:\mathrm{of}\:\mathrm{unity} \\ $$$$=\:\mathrm{1}.\alpha.\alpha^{\mathrm{2}} .\alpha^{\mathrm{3}} \:…..\:\alpha^{{n}−\mathrm{1}} \:=\:\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \\ $$$$\mathrm{Why}?\:\mathrm{How}\:\mathrm{to}\:\mathrm{get}\:\mathrm{RHS}? \\ $$ Answered by ajfour last updated…

Question-84845

Question Number 84845 by Rio Michael last updated on 16/Mar/20 Commented by Rio Michael last updated on 16/Mar/20 $$\mathrm{The}\:\mathrm{circuit}\:\mathrm{above}\:\mathrm{shows}\:\mathrm{how}\:\mathrm{resistors}\:\mathrm{and}\:\mathrm{cells}\:\mathrm{can}\:\mathrm{be}\:\mathrm{connected} \\ $$$$\mathrm{given}\:\mathrm{that}\:{a},{b}\:\mathrm{and}\:{c}\:\mathrm{represent}\:\mathrm{currents}.\:\mathrm{Using}\:\mathrm{kirchoffs}\:\mathrm{laws}, \\ $$$$\left.\mathrm{a}\right)\:\mathrm{find}\:\mathrm{the}\:\mathrm{values}\:\mathrm{of}\:{a},{b}\:\mathrm{and}\:{c}.\:\left[\mathrm{these}\:\mathrm{are}\:\mathrm{not}\:\mathrm{usual}\:\mathrm{symbols}\right] \\ $$$$\left.\mathrm{b}\right)\:\mathrm{Calculate}\:\mathrm{the}\:\mathrm{pd}\:\left(\mathrm{potential}\:\mathrm{difference}\right)\:\mathrm{between}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}.…

Question-150376

Question Number 150376 by cherokeesay last updated on 11/Aug/21 Commented by liberty last updated on 12/Aug/21 $$\left(\mathrm{2}\sqrt{\mathrm{3}}+\mathrm{r}\right)^{\mathrm{2}} =\left(\mathrm{4}\sqrt{\mathrm{3}}−\mathrm{r}\right)^{\mathrm{2}} +\left(\mathrm{2}\sqrt{\mathrm{3}}−\mathrm{r}\right)^{\mathrm{2}} \\ $$$$\mathrm{let}\:\mathrm{2}\sqrt{\mathrm{3}}\:=\:{a} \\ $$$$\Rightarrow\left({a}+{r}\right)^{\mathrm{2}} −\left({a}−{r}\right)^{\mathrm{2}} =\left(\mathrm{2}{a}−{r}\right)^{\mathrm{2}}…

sin-7x-cos-3x-dx-

Question Number 84843 by M±th+et£s last updated on 16/Mar/20 $$\int\frac{{sin}\left(\mathrm{7}{x}\right)}{{cos}\left(\mathrm{3}{x}\right)}\:{dx} \\ $$ Commented by jagoll last updated on 17/Mar/20 $$\mathrm{sin}\:\mathrm{7x}\:=\:\mathrm{sin}\:\left(\mathrm{4x}+\mathrm{3x}\right)\: \\ $$$$=\:\mathrm{sin}\:\mathrm{4x}\:\mathrm{cos}\:\mathrm{3x}\:+\:\mathrm{cos}\:\mathrm{4x}\:\mathrm{sin}\:\mathrm{3x} \\ $$$$\int\:\frac{\mathrm{sin}\:\mathrm{7x}}{\mathrm{cos}\:\mathrm{3x}}\:\mathrm{dx}\:=\:\int\:\left(\mathrm{sin}\:\mathrm{4x}\:+\:\mathrm{cos}\:\mathrm{4x}\:\mathrm{tan}\:\mathrm{3x}\right)\mathrm{dx} \\…

Question-150372

Question Number 150372 by tabata last updated on 11/Aug/21 Commented by mathdanisur last updated on 11/Aug/21 $$\underset{{a}} {\overset{{a}+\mathrm{1}} {\int}}{f}\left({x}\right){dx}=\mathrm{2}\:\:\Rightarrow\underset{{a}} {\overset{{a}+\mathrm{1}} {\int}}\left(\frac{\mathrm{1}}{\mathrm{1}+{x}}\:+\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }\:+\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{3}} }\:+\:…\:+\:\frac{\mathrm{1}}{\mathrm{1}+{x}^{{n}} }\right){dx}\:=\:\mathrm{2}\:\:\left(\mathrm{1}\right) \\…

k-0-2-k-3-k-5-k-

Question Number 150374 by mathdanisur last updated on 11/Aug/21 $$\underset{\boldsymbol{\mathrm{k}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{2}^{\boldsymbol{\mathrm{k}}} \:+\:\mathrm{3}^{\boldsymbol{\mathrm{k}}} }{\mathrm{5}^{\boldsymbol{\mathrm{k}}} }\:\:=\:? \\ $$ Answered by eman_64 last updated on 11/Aug/21 $$\:\:\:=\:\sum_{\mathrm{k}=\mathrm{0}}…