Question Number 84711 by M±th+et£s last updated on 15/Mar/20 Commented by mr W last updated on 15/Mar/20 $${x}\lceil{x}\left[{x}\right]\rceil=\mathrm{35}\:\Rightarrow\:{no}\:{solution}! \\ $$$$ \\ $$$${x}\left[{x}\left[{x}\right]\right]=\mathrm{35}\:\Rightarrow\:{solution}\:{x}=\mathrm{3}.\mathrm{5} \\ $$ Commented…
Question Number 150247 by mathdanisur last updated on 10/Aug/21 $$\underset{\:\mathrm{2}} {\overset{\:\mathrm{6}} {\int}}\:\left(\mathrm{x}-\mathrm{1}\right)\left(\mathrm{x}-\mathrm{2}\right)\left(\mathrm{x}-\mathrm{3}\right)…\left(\mathrm{x}-\mathrm{9}\right)\:\mathrm{dx}\:=\:? \\ $$$$\left.\mathrm{a}\left.\right)\left.\mathrm{1}\left.\:\left.\:\:\:\:\mathrm{b}\right)\mathrm{0}\:\:\:\:\:\mathrm{c}\right)\mathrm{6}!\:\:\:\:\:\mathrm{d}\right)-\mathrm{2}\:\:\:\:\mathrm{e}\right)\mathrm{4}! \\ $$ Commented by amin96 last updated on 10/Aug/21 $$\int_{\mathrm{2}} ^{\mathrm{6}}…
Question Number 84708 by Power last updated on 15/Mar/20 Answered by TANMAY PANACEA last updated on 16/Mar/20 $$\int\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{5}}} \\ $$$$\int\frac{{dx}}{\left({x}+\mathrm{2}\right)^{\mathrm{2}} \sqrt{\left({x}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{6}}} \\…
Question Number 84709 by M±th+et£s last updated on 15/Mar/20 $$\int\sqrt[{\mathrm{3}}]{{tan}\left({x}\right)}\:{dx} \\ $$ Answered by MJS last updated on 15/Mar/20 $$\int\sqrt[{\mathrm{3}}]{\mathrm{tan}\:{x}}\:{dx}= \\ $$$$\:\:\:\:\:\left[{t}=\left(\mathrm{tan}\:{x}\right)^{\mathrm{2}/\mathrm{3}} \:\rightarrow\:{dx}=\frac{\mathrm{3}}{\mathrm{2}}\left(\mathrm{sin}\:{x}\right)^{\mathrm{1}/\mathrm{3}} \left(\mathrm{cos}\:{x}\right)^{\mathrm{5}/\mathrm{3}} {dt}\right]…
Question Number 19171 by gourav~ last updated on 06/Aug/17 $${log}_{\sqrt{\mathrm{2}}} \:\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\sqrt{\mathrm{2}\:\:\:\:}}}} \\ $$ Commented by gourav~ last updated on 06/Aug/17 $${find}\:{value} \\ $$ Answered by…
Question Number 84702 by Power last updated on 15/Mar/20 Commented by abdomathmax last updated on 15/Mar/20 $${I}\:=\int\:\:\:\frac{{dx}}{{shx}+\mathrm{1}}\:\Rightarrow{I}=\int\:\:\frac{{dx}}{\frac{{e}^{{x}} −{e}^{−{x}} }{\mathrm{2}}+\mathrm{1}}\:=\int\frac{\mathrm{2}{dx}}{{e}^{{x}} −{e}^{−{x}} \:+\mathrm{2}} \\ $$$$=_{{e}^{{x}} ={t}} \:\:\:\:\:\int\:\:\frac{\mathrm{2}}{{t}−{t}^{−\mathrm{1}}…
Question Number 19167 by Tinkutara last updated on 06/Aug/17 $$\mathrm{Two}\:\mathrm{particles}\:{A}\:\mathrm{and}\:{B}\:\mathrm{move}\:\mathrm{with} \\ $$$$\mathrm{constant}\:\mathrm{velocities}\:{v}_{\mathrm{1}} \:\mathrm{and}\:{v}_{\mathrm{2}} \:\mathrm{along}\:\mathrm{two} \\ $$$$\mathrm{mutually}\:\mathrm{perpendicular}\:\mathrm{straight}\:\mathrm{lines} \\ $$$$\mathrm{towards}\:\mathrm{the}\:\mathrm{intersection}\:\mathrm{point}\:{O}.\:\mathrm{At} \\ $$$$\mathrm{moment}\:{t}\:=\:\mathrm{0},\:\mathrm{the}\:\mathrm{particles}\:\mathrm{were} \\ $$$$\mathrm{located}\:\mathrm{at}\:\mathrm{distances}\:{d}_{\mathrm{1}} \:\mathrm{and}\:{d}_{\mathrm{2}} \:\mathrm{from}\:{O} \\…
Question Number 150228 by learner001 last updated on 10/Aug/21 Commented by learner001 last updated on 10/Aug/21 $$\mathrm{please}\:\mathrm{someone}\:\mathrm{explain}\:\mathrm{how}\:\mathrm{the}\:\mathrm{inequality}\:\mathrm{sign} \\ $$$$\mathrm{is}\:\mathrm{reserved}?\:\mathrm{after}\:\mathrm{ther}\:\mathrm{multiplied}\:\mathrm{through}\:\mathrm{by}\:\mathrm{a} \\ $$$$\mathrm{negative}. \\ $$ Terms of…
Question Number 150231 by Lekhraj last updated on 10/Aug/21 Answered by Ar Brandon last updated on 10/Aug/21 $${f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{3}^{{x}} +\sqrt{\mathrm{3}}} \\ $$$$\Rightarrow{f}\left(\mathrm{1}−{x}\right)=\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{1}−{x}} +\sqrt{\mathrm{3}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{3}^{{x}} }{\mathrm{3}+\mathrm{3}^{{x}}…
Question Number 84693 by Power last updated on 15/Mar/20 Commented by abdomathmax last updated on 15/Mar/20 $${let}\:\varphi\left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{sin}\left({tx}\right)}{{x}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)}{dx}\:\:{we}\:{have} \\ $$$$\varphi^{'} \left({t}\right)=\int_{\mathrm{0}} ^{\infty} \:\frac{{cos}\left({tx}\right)}{{x}^{\mathrm{2}}…