Menu Close

Author: Tinku Tara

x-dx-x-8-1-

Question Number 150095 by mathdanisur last updated on 09/Aug/21 $$\Omega\:=\int\:\frac{\mathrm{x}\:\mathrm{dx}}{\mathrm{x}^{\mathrm{8}} \:-\:\mathrm{1}}\:=\:? \\ $$ Answered by Ar Brandon last updated on 09/Aug/21 $$\Omega=\int\frac{{xdx}}{{x}^{\mathrm{8}} −\mathrm{1}}=\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left({x}^{\mathrm{2}} \right)}{\left({x}^{\mathrm{2}} \right)^{\mathrm{4}}…

sin-1-2x-2-4x-2-8x-13-dx-

Question Number 84556 by jagoll last updated on 14/Mar/20 $$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2x}+\mathrm{2}}{\:\sqrt{\mathrm{4x}^{\mathrm{2}} +\mathrm{8x}+\mathrm{13}}}\right)\:\mathrm{dx} \\ $$ Commented by john santu last updated on 14/Mar/20 $$\int\:\mathrm{sin}^{−\mathrm{1}} \left(\frac{\mathrm{2x}+\mathrm{2}}{\:\sqrt{\left(\mathrm{2x}+\mathrm{2}\right)^{\mathrm{2}} +\mathrm{9}}}\right)\:\mathrm{dx}…

Question-19021

Question Number 19021 by ajfour last updated on 03/Aug/17 Commented by ajfour last updated on 03/Aug/17 $$\mathrm{If}\:\:\:\:\:\:\phi=\mathrm{tan}^{−\mathrm{1}} \left[\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\mathrm{cot}\:\theta\right]+\theta \\ $$$$\Rightarrow\:\mathrm{tan}\:\left(\phi−\theta\right)=\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\mathrm{cot}\:\theta \\ $$$$\:\:\:\frac{\mathrm{tan}\:\phi−\mathrm{tan}\:\theta}{\mathrm{1}+\mathrm{tan}\:\phi\mathrm{tan}\:\theta}=\frac{\mathrm{cot}\:\theta}{\:\sqrt{\mathrm{2}}+\mathrm{1}} \\ $$$$\Rightarrow\:\left(\sqrt{\mathrm{2}}+\mathrm{1}\right)\:\left(\mathrm{tan}\:\phi−\mathrm{tan}\:\theta\right) \\…

Question-84557

Question Number 84557 by Power last updated on 14/Mar/20 Commented by jagoll last updated on 14/Mar/20 $$\mathrm{ln}\left(\mathrm{cos}\:\mathrm{x}\right)\:=\:\mathrm{u}\:\Rightarrow\:\mathrm{cos}\:\mathrm{x}\:=\:\mathrm{e}^{\mathrm{u}} \\ $$$$−\mathrm{sin}\:\mathrm{x}\:\mathrm{dx}\:=\:\mathrm{e}^{\mathrm{u}} \:\mathrm{du}\: \\ $$$$\mathrm{dx}\:=\:\frac{−\mathrm{e}^{\mathrm{u}} }{\mathrm{sin}\:\mathrm{x}}\:\mathrm{dx}\:=\:\frac{−\mathrm{e}^{\mathrm{u}} \:\mathrm{du}}{\:\sqrt{\mathrm{1}−\mathrm{e}^{\mathrm{2u}} }}…

The-sum-of-four-consecutive-2-digit-numbers-when-divided-by-10-becomes-a-perfect-square-Which-of-the-following-can-possibly-be-one-of-these-four-numbers-a-21-b-25-c-41-d-67-e-73-please-show-work

Question Number 19009 by chux last updated on 03/Aug/17 $$\mathrm{The}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{four}\:\mathrm{consecutive} \\ $$$$\mathrm{2}−\mathrm{digit}\:\mathrm{numbers}\:\mathrm{when}\:\mathrm{divided}\:\mathrm{by} \\ $$$$\mathrm{10}\:\mathrm{becomes}\:\mathrm{a}\:\mathrm{perfect}\:\mathrm{square}.\mathrm{Which} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{can}\:\mathrm{possibly}\:\mathrm{be} \\ $$$$\mathrm{one}\:\mathrm{of}\:\mathrm{these}\:\mathrm{four}\:\mathrm{numbers}? \\ $$$$\left(\mathrm{a}\right)\mathrm{21}\left(\mathrm{b}\right)\mathrm{25}\left(\mathrm{c}\right)\mathrm{41}\left(\mathrm{d}\right)\mathrm{67}\left(\mathrm{e}\right)\mathrm{73} \\ $$$$ \\ $$$$ \\…