Question Number 84364 by jagoll last updated on 12/Mar/20 $$\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\sqrt{\pi}−\sqrt{\pi+\mathrm{4x}}}{\mathrm{cos}\:\left(\frac{\pi\left(\mathrm{x}+\mathrm{1}\right)}{\mathrm{2}}\right)}\:=\:? \\ $$ Answered by john santu last updated on 12/Mar/20 $$\sqrt{\pi}\:×\:\underset{{x}\rightarrow\pi} {\mathrm{lim}}\:\frac{\mathrm{1}−\sqrt{\mathrm{1}+\frac{\mathrm{4x}}{\pi}}}{−\mathrm{sin}\:\left(\frac{\pi\mathrm{x}}{\mathrm{2}}\right)}\:= \\ $$$$−\sqrt{\pi}\:×\:\underset{{x}\rightarrow\pi}…
Question Number 18827 by aplus last updated on 30/Jul/17 Commented by aplus last updated on 30/Jul/17 $$\mathrm{help}\:\mathrm{guys} \\ $$ Commented by mrW1 last updated on…
Question Number 18823 by rish@bh last updated on 30/Jul/17 $$\mathrm{If}\:\mathrm{P}\equiv\left(\mathrm{2},\mathrm{1}\right)\:\mathrm{and}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{lie}\:\mathrm{on}\:\mathrm{x}−\mathrm{axis} \\ $$$$\mathrm{and}\:\mathrm{y}=\mathrm{x}\:\mathrm{respectively}\:\mathrm{such}\:\mathrm{that}\: \\ $$$$\mathrm{PA}+\mathrm{PB}+\mathrm{AB}\:\mathrm{is}\:\mathrm{minimum}\:\mathrm{find} \\ $$$$\mathrm{A}\:\mathrm{and}\:\mathrm{B}. \\ $$ Commented by ajfour last updated on 30/Jul/17…
Question Number 84359 by TawaTawa1 last updated on 12/Mar/20 Commented by TawaTawa1 last updated on 12/Mar/20 $$\mathrm{Please}\:\mathrm{help}.\:\:\mathrm{With}\:\mathrm{diagram}\:\mathrm{if}\:\mathrm{possible}.\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sirs} \\ $$ Terms of Service Privacy Policy Contact:…
Question Number 149894 by ajfour last updated on 08/Aug/21 Commented by ajfour last updated on 08/Aug/21 $${Find}\:{minimum}\:{and}\:{maximum} \\ $$$${values}\:{for}\:{the}\:{side}\:{of}\:{equilateral} \\ $$$${triangle}\:{shown}. \\ $$ Answered by…
Question Number 149889 by Samimsultani last updated on 08/Aug/21 Commented by bramlexs22 last updated on 08/Aug/21 $$\sqrt{\mathrm{a}+\mathrm{b}\sqrt{\mathrm{d}}}\:=\:\sqrt{\frac{\mathrm{a}+\mathrm{c}}{\mathrm{2}}}\:+\mathrm{sgn}\left(\mathrm{b}\right)\sqrt{\frac{\mathrm{a}−\mathrm{c}}{\mathrm{2}}} \\ $$$$\mathrm{where}\:\mathrm{c}=\sqrt{\mathrm{a}^{\mathrm{2}} −\mathrm{b}^{\mathrm{2}} \mathrm{d}}\: \\ $$ Commented by…
Question Number 18818 by khamizan833@yahoo.com last updated on 30/Jul/17 Answered by daffa22 last updated on 30/Jul/17 $$\left({x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{9}\right)^{{x}^{\mathrm{2}} −\mathrm{4}} =\left({x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{9}\right)^{\mathrm{0}} \\ $$$${x}^{\mathrm{2}} −\mathrm{4}\:=\:\mathrm{0} \\…
Question Number 149891 by mathdanisur last updated on 08/Aug/21 $$\mathrm{if}\:\:\:\mathrm{x};\mathrm{y};\mathrm{z};\mathrm{m};\mathrm{n};\mathrm{p}\in\mathbb{R}^{+} \:\mathrm{then}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\frac{\mathrm{m}\left(\mathrm{x}+\mathrm{y}\right)}{\:\sqrt{\left(\mathrm{n}+\mathrm{2p}\right)\mathrm{x}^{\mathrm{2}} +\mathrm{2nxy}+\left(\mathrm{n}+\mathrm{2p}\right)\mathrm{y}^{\mathrm{2}} }}\:\leqslant\:\frac{\mathrm{3m}}{\:\sqrt{\mathrm{n}+\mathrm{p}}} \\ $$ Answered by dumitrel last updated on 08/Aug/21…
Question Number 149885 by puissant last updated on 08/Aug/21 $${I}_{{n}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{dx}}{{cos}^{\mathrm{2}{n}+\mathrm{1}} {x}} \\ $$$${to}\:{show}\:{that}\:: \\ $$$$\forall\:{n}\in\mathbb{N}^{\ast} ,\:\mathrm{2}{nI}_{{n}} =\left(\mathrm{2}{n}−\mathrm{1}\right){I}_{{n}−\mathrm{1}} +\frac{\mathrm{2}^{{n}} }{\:\sqrt{\mathrm{2}}} \\ $$$$\left({I}_{{n}} =\int_{\mathrm{0}}…
Question Number 149886 by liberty last updated on 08/Aug/21 $$\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{ln}\:^{\mathrm{2}} \left(\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} }\left(\frac{\mathrm{ln}\:\left(\mathrm{sin}\:\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\right)}{\mathrm{ln}\:\left(\mathrm{sin}\:\left(\mathrm{x}\right)\right)}\:+\frac{\mathrm{ln}\:\mathrm{2}}{\mathrm{ln}\:\left(\mathrm{x}\right)}\right)\:=? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com