Menu Close

Author: Tinku Tara

Question-18798

Question Number 18798 by chernoaguero@gmail.com last updated on 29/Jul/17 Answered by behi.8.3.4.1.7@gmail.com last updated on 30/Jul/17 $$\frac{{x}+{a}}{{x}+{b}}={t},\frac{{x}−{a}}{{x}−{b}}={s}\Rightarrow\frac{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }{{x}^{\mathrm{2}} −{b}^{\mathrm{2}} }={ts},\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }{{ab}}={m} \\ $$$$\Rightarrow{t}^{\mathrm{2}}…

lim-x-2-3-x-9-x-2-

Question Number 149871 by ArielVyny last updated on 07/Aug/21 $${lim}_{{x}\rightarrow\mathrm{2}} \frac{\mathrm{3}^{{x}!} −\mathrm{9}}{{x}−\mathrm{2}} \\ $$ Answered by Ar Brandon last updated on 08/Aug/21 $$\mathscr{L}=\underset{{x}\rightarrow\mathrm{2}} {\mathrm{lim}}\frac{\mathrm{3}^{{x}!} −\mathrm{9}}{{x}−\mathrm{2}}…

If-A-B-C-are-the-angles-of-a-triangle-then-2sin-A-2-cosec-B-2-sin-C-2-sinAcot-B-2-cos-A-is-1-Independent-of-A-B-C-2-Function-of-A-B-C-3-Function-of-A-B-4-Function-of-B-C-

Question Number 18797 by Tinkutara last updated on 29/Jul/17 $$\mathrm{If}\:{A},\:{B},\:{C}\:\mathrm{are}\:\mathrm{the}\:\mathrm{angles}\:\mathrm{of}\:\mathrm{a}\:\mathrm{triangle}, \\ $$$$\mathrm{then}\:\mathrm{2sin}\frac{{A}}{\mathrm{2}}\mathrm{cosec}\frac{{B}}{\mathrm{2}}\mathrm{sin}\frac{{C}}{\mathrm{2}}\:−\:\mathrm{sin}{A}\mathrm{cot}\frac{{B}}{\mathrm{2}} \\ $$$$−\:\mathrm{cos}\:{A}\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{Independent}\:\mathrm{of}\:{A},\:{B},\:{C} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{Function}\:\mathrm{of}\:{A},\:{B},\:{C} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{Function}\:\mathrm{of}\:{A},\:{B} \\ $$$$\left(\mathrm{4}\right)\:\mathrm{Function}\:\mathrm{of}\:{B},\:{C} \\ $$ Answered…

if-x-y-z-m-n-R-then-cyc-b-1-m-x-n-y-2-3-m-n-2-

Question Number 149870 by mathdanisur last updated on 07/Aug/21 $$\mathrm{if}\:\:\:\mathrm{x};\mathrm{y};\mathrm{z};\mathrm{m};\mathrm{n}\in\mathbb{R}^{+} \:\:\mathrm{then}: \\ $$$$\underset{\boldsymbol{\mathrm{cyc}}} {\sum}\:\frac{\mathrm{b}^{−\mathrm{1}} }{\left(\mathrm{m}\sqrt{\mathrm{x}}\:+\:\mathrm{n}\sqrt{\mathrm{y}}\right)^{\mathrm{2}} }\:\geqslant\:\frac{\mathrm{3}}{\left(\mathrm{m}\:+\:\mathrm{n}\right)^{\mathrm{2}} } \\ $$ Commented by mathdanisur last updated on…

1-find-without-l-hopital-lim-x-0-2-x-1-x-1-1-3-x-1-1-4-x-2-prove-that-the-general-solution-for-tbe-differential-equation-1-y-2-1-x-2-dy-dx-0-is-y-k-x-1-kx-k-is

Question Number 84333 by M±th+et£s last updated on 11/Mar/20 $$\left.\mathrm{1}\right){find}\:{without}\:{l}'{hopital} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\mathrm{2}\sqrt{{x}+\mathrm{1}}−\sqrt[{\mathrm{3}}]{{x}+\mathrm{1}}−\sqrt[{\mathrm{4}}]{{x}+\mathrm{1}}}{{x}} \\ $$$$ \\ $$$$\left.\mathrm{2}\right)\:{prove}\:{that}\:{the}\:{general}\:{solution}\:{for}\:{tbe}\:{differential}\:{equation} \\ $$$$\left(\mathrm{1}+{y}^{\mathrm{2}} \right)+\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\left(\frac{{dy}}{{dx}}\right)=\mathrm{0}\:{is}\:{y}=\frac{{k}−{x}}{\mathrm{1}+{kx}},{k}\:{is}\:{a}\:{constant} \\ $$$${then}\:{find}\:{the}\:{special}\:{solution}\:{if}\:{y}=\frac{\mathrm{2}}{\mathrm{3}\:}\:{when}\:{x}=\mathrm{1} \\ $$…

lim-x-1-2x-3-x-1-64-x-3-1-

Question Number 84330 by M±th+et£s last updated on 11/Mar/20 $$\underset{{x}\rightarrow\mathrm{1}} {{lim}}\frac{\left(\mathrm{2}{x}^{\mathrm{3}} +{x}+\mathrm{1}\right)−\mathrm{64}}{{x}^{\mathrm{3}} −\mathrm{1}} \\ $$ Commented by M±th+et£s last updated on 11/Mar/20 $${typo}\:\left(\mathrm{2}{x}^{\mathrm{3}} +{x}+\mathrm{1}\right)^{\mathrm{3}} \\…

3-7-1-2-ln-u-1-u-1-1-2-ln-u-2-1-

Question Number 84328 by sahnaz last updated on 11/Mar/20 $$\frac{\mathrm{3}}{\mathrm{7}}×\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left[\frac{\mathrm{u}−\mathrm{1}}{\mathrm{u}+\mathrm{1}}\right]−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{ln}\left[\mathrm{u}^{\mathrm{2}} −\mathrm{1}\right] \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

3-7u-7u-2-7-du-

Question Number 84326 by sahnaz last updated on 11/Mar/20 $$\int\frac{\mathrm{3}−\mathrm{7u}}{\mathrm{7u}^{\mathrm{2}} −\mathrm{7}}\mathrm{du} \\ $$ Answered by TANMAY PANACEA last updated on 11/Mar/20 $$\frac{\mathrm{3}}{\mathrm{7}}\int\frac{{du}}{\left({u}+\mathrm{1}\right)\left({u}−\mathrm{1}\right)}−\frac{\mathrm{1}}{\mathrm{2}}\int\frac{{d}\left(\mathrm{7}{u}^{\mathrm{2}} −\mathrm{7}\right)}{\mathrm{7}{u}^{\mathrm{2}} −\mathrm{7}} \\…