Menu Close

Author: Tinku Tara

Question-18763

Question Number 18763 by Tinkutara last updated on 29/Jul/17 Commented by ajfour last updated on 29/Jul/17 $$\mathrm{n}=\mathrm{2},\:\mathrm{angle}\:\theta=\mathrm{tan}^{−\mathrm{1}} \left(\mathrm{2}\right)\:\mathrm{with}\:\mathrm{south} \\ $$$$\mathrm{direction}. \\ $$ Commented by Tinkutara…

lim-x-0-x-x-x-sin-sin-sin-x-

Question Number 149830 by DonQuichote last updated on 07/Aug/21 $${lim}_{{x}\rightarrow\mathrm{0}} \frac{\sqrt{{x}−\sqrt{{x}−\sqrt{{x}−…}}}}{{sin}\:\left({sin}\:\left({sin}\:\left(….{x}\right)\right.\right.}=? \\ $$ Answered by mathmax by abdo last updated on 08/Aug/21 $$\mathrm{y}=\sqrt{\mathrm{x}−\sqrt{\mathrm{x}−\sqrt{\mathrm{x}−}..}}=\sqrt{\mathrm{x}−\mathrm{y}}\:\Rightarrow\mathrm{y}^{\mathrm{2}} \:=\mathrm{x}−\mathrm{y}\:\Rightarrow\mathrm{y}^{\mathrm{2}} +\mathrm{y}−\mathrm{x}=\mathrm{0}…

Motion-in-two-dimensions-in-a-plane-can-be-studied-by-expressing-position-velocity-and-acceleration-as-vectors-in-Cartesian-co-ordinates-A-A-x-i-A-y-j-where-i-and-j-are-unit-vecto

Question Number 18749 by Tinkutara last updated on 29/Jul/17 $$\mathrm{Motion}\:\mathrm{in}\:\mathrm{two}\:\mathrm{dimensions},\:\mathrm{in}\:\mathrm{a}\:\mathrm{plane} \\ $$$$\mathrm{can}\:\mathrm{be}\:\mathrm{studied}\:\mathrm{by}\:\mathrm{expressing}\:\mathrm{position}, \\ $$$$\mathrm{velocity}\:\mathrm{and}\:\mathrm{acceleration}\:\mathrm{as}\:\mathrm{vectors}\:\mathrm{in} \\ $$$$\mathrm{Cartesian}\:\mathrm{co}-\mathrm{ordinates}\:\overset{\rightarrow} {{A}}\:=\:{A}_{{x}} \overset{\wedge} {{i}}\:+\:{A}_{{y}} \overset{\wedge} {{j}} \\ $$$$\mathrm{where}\:\overset{\wedge} {{i}}\:\mathrm{and}\:\overset{\wedge} {{j}}\:\mathrm{are}\:\mathrm{unit}\:\mathrm{vector}\:\mathrm{along}\:{x}…