Question Number 18606 by 99 last updated on 25/Jul/17 $$\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{3}}{\mathrm{3}×\mathrm{7}}+\frac{\mathrm{5}}{\mathrm{3}×\mathrm{7}×\mathrm{11}}+\frac{\mathrm{7}}{\mathrm{3}×\mathrm{7}×\mathrm{11}×\mathrm{15}}+…{n}\: \\ $$$$\:{terms} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 18604 by tawa tawa last updated on 25/Jul/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 149673 by mnjuly1970 last updated on 06/Aug/21 $$\:\:\:\mathrm{solve}\::: \\ $$$$\left[\:\mathrm{1}\right]\:\:\:\:\boldsymbol{\phi}\::=\:\int_{\mathrm{0}} ^{\:\:\infty\:} \frac{{ln}^{\:\mathrm{2}} \:\left({e}\:{x}\:\right)}{{e}^{\:\mathrm{4}} \:+{x}^{\:\mathrm{2}} }\:{dx}\:=\frac{\pi\:{k}}{{e}^{\:\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{k}:=\:? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\:\:\:\left[\:\mathrm{2}\:\right]\:\:\:\Omega\::=\:\int_{\mathrm{0}\:} ^{\:\infty}…
Question Number 18603 by Tinkutara last updated on 25/Jul/17 $$\mathrm{The}\:\mathrm{work}\:\mathrm{function}\:\mathrm{of}\:\mathrm{a}\:\mathrm{metal}\:\mathrm{is}\:\mathrm{4}\:\mathrm{eV}.\:\mathrm{If} \\ $$$$\mathrm{light}\:\mathrm{of}\:\mathrm{frequency}\:\mathrm{2}.\mathrm{3}\:×\:\mathrm{10}^{\mathrm{15}} \:\mathrm{Hz}\:\mathrm{is} \\ $$$$\mathrm{incident}\:\mathrm{on}\:\mathrm{metal}\:\mathrm{surface},\:\mathrm{then}, \\ $$$$\left(\mathrm{1}\right)\:\mathrm{No}\:\mathrm{photoelectron}\:\mathrm{will}\:\mathrm{be}\:\mathrm{ejected} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{2}\:\mathrm{photoelectron}\:\mathrm{of}\:\mathrm{zero}\:\mathrm{kinetic} \\ $$$$\mathrm{energy}\:\mathrm{are}\:\mathrm{ejected} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{1}\:\mathrm{photoelectron}\:\mathrm{of}\:\mathrm{zero}\:\mathrm{kinetic} \\ $$$$\mathrm{energy}\:\mathrm{is}\:\mathrm{ejected}…
Question Number 149675 by mathdanisur last updated on 06/Aug/21 $$\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\sqrt[{\boldsymbol{\mathrm{n}}}]{\underset{\:\mathrm{0}} {\overset{\:\infty} {\int}}\:\frac{\mathrm{dx}}{\left(\mathrm{x}^{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\mathrm{4}}\right)^{\boldsymbol{\mathrm{n}}+\mathrm{1}} }}\:=\:? \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 84136 by mathocean1 last updated on 09/Mar/20 $${show}\:{that}: \\ $$$${tan}\mathrm{3}{x}=\frac{\mathrm{3}+{tan}^{\mathrm{2}} {x}}{\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}}×{tanx} \\ $$ Answered by Rio Michael last updated on 09/Mar/20 $$\mathrm{tan3}{x}\:=\:\mathrm{tan}\left(\mathrm{2}{x}\:+\:{x}\right)\:=\:\frac{\mathrm{tan2}{x}\:+\:\mathrm{tan}{x}}{\mathrm{1}−\mathrm{tan2}{x}\mathrm{tan}{x}}…
Question Number 84134 by Rio Michael last updated on 09/Mar/20 $$\mathrm{find}\:\mathrm{the}\:\mathrm{general}\:\mathrm{solution}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\:\mathrm{2sin}\:\mathrm{3}\theta\:=\:\mathrm{sin}\:\mathrm{2}\theta \\ $$ Answered by mr W last updated on 09/Mar/20 $$\mathrm{2}\:\mathrm{sin}\:\theta\left(\mathrm{3}−\mathrm{4}\:\mathrm{sin}^{\mathrm{2}} \:\theta\right)=\mathrm{2}\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta…
Question Number 84135 by M±th+et£s last updated on 09/Mar/20 $${find}\:{the}\:{area}\:{between}\:{the}\:{function}\: \\ $$$${y}=\mathrm{2}{sin}\mathrm{2}{x}\:−\mathrm{1}\:{and}\:\:{the}\:{x}−{axis}\:\:{on}\:\left[−\pi,\frac{\pi}{\mathrm{2}}\right] \\ $$ Answered by Rio Michael last updated on 09/Mar/20 $$\int_{−\pi} ^{\frac{\pi}{\mathrm{2}}} \left(\mathrm{2sin}\:\mathrm{2}{x}−\mathrm{1}\right){dx}…
Question Number 149670 by EDWIN88 last updated on 06/Aug/21 $$\:\:\:{Solve}\:{the}\:{equation}\: \\ $$$$\:\:{x}=\sqrt{{a}−\sqrt{{a}+{x}}\:}\:{where}\:{a}>\mathrm{0}\:{is}\: \\ $$$$\:{a}\:{parameter}. \\ $$ Answered by MJS_new last updated on 06/Aug/21 $$\mathrm{for}\:{a},\:{x}\:\in\mathbb{R} \\…
Question Number 84130 by mahdi last updated on 09/Mar/20 $$\underset{{x}\rightarrow+\infty} {\mathrm{lim}x}\left(\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{2x}}−\mathrm{2}\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{x}}+\mathrm{x}\right) \\ $$ Commented by MJS last updated on 10/Mar/20 $$\mathrm{let}\:{x}=\frac{\mathrm{1}}{{t}} \\ $$$$\underset{{t}\rightarrow\mathrm{0}^{+}…