Menu Close

Author: Tinku Tara

How-many-times-is-digit-0-written-when-listing-all-numbers-from-1-to-3333-

Question Number 18498 by Tinkutara last updated on 22/Jul/17 $$\mathrm{How}\:\mathrm{many}\:\mathrm{times}\:\mathrm{is}\:\mathrm{digit}\:\mathrm{0}\:\mathrm{written}\:\mathrm{when} \\ $$$$\mathrm{listing}\:\mathrm{all}\:\mathrm{numbers}\:\mathrm{from}\:\mathrm{1}\:\mathrm{to}\:\mathrm{3333}? \\ $$ Commented by richard last updated on 23/Jul/17 $${do}\:{you}\:{want}\:{how}\:{many}\:{zeros}\:{there}\:{are}\:{between}\:\mathrm{1}\:{and}\:\mathrm{3333},\:{or}\:{how}\:{many}\:{times}\:{the}\:“\mathrm{0}''\:{appears},\:{independently}\:{of}\:{the}\:{amount}\:{of}\:{zeros}? \\ $$ Answered…

if-q-is-prime-number-fixed-then-solve-for-natural-numbers-the-equation-1-q-1-x-1-y-1-z-

Question Number 149567 by mathdanisur last updated on 06/Aug/21 $${if}\:\:\boldsymbol{{q}}\:\:{is}\:{prime}\:{number}\:{fixed},\:{then} \\ $$$${solve}\:{for}\:{natural}\:{numbers}\:{the}\:{equation}: \\ $$$$\frac{\mathrm{1}}{{q}}\:=\:\frac{\mathrm{1}}{{x}}\:+\:\frac{\mathrm{1}}{{y}}\:-\:\frac{\mathrm{1}}{{z}} \\ $$ Commented by Rasheed.Sindhi last updated on 07/Aug/21 $$\mathrm{My}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{too}\:\mathrm{lengthy}. \\…

let-f-x-e-nx-ln-2-x-2-with-n-integr-natural-1-calculste-f-n-x-and-f-n-0-2-developp-f-at-integr-serie-3-find-0-1-f-x-d-and-0-f-x-dx-

Question Number 84029 by mathmax by abdo last updated on 08/Mar/20 $${let}\:{f}\left({x}\right)={e}^{−{nx}} {ln}\left(\mathrm{2}+{x}^{\mathrm{2}} \right)\:\:\:{with}\:{n}\:{integr}\:{natural} \\ $$$$\left.\mathrm{1}\right)\:{calculste}\:{f}^{\left({n}\right)} \left({x}\right)\:{and}\:{f}^{\left({n}\right)} \left(\mathrm{0}\right) \\ $$$$\left.\mathrm{2}\right)\:{developp}\:{f}\:{at}\:{integr}\:{serie} \\ $$$$\left.\mathrm{3}\right){find}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:{f}\left({x}\right){d}\:{and}\:\int_{\mathrm{0}} ^{\infty}…

Question-18492

Question Number 18492 by virus last updated on 22/Jul/17 Commented by mrW1 last updated on 23/Jul/17 $$\mathrm{the}\:\mathrm{force}\:\mathrm{in}\:\mathrm{k}\:\mathrm{above}\:\mathrm{block}\:\mathrm{A}\:\mathrm{is}\:\mathrm{3mg}. \\ $$$$\mathrm{when}\:\mathrm{the}\:\mathrm{spring}\:\mathrm{above}\:\mathrm{A}\:\mathrm{is}\:\mathrm{cut},\:\mathrm{this} \\ $$$$\mathrm{force}\:\mathrm{is}\:\mathrm{released},\:\mathrm{a}\:\mathrm{force}\:\mathrm{of}\:\mathrm{3mg}\:\mathrm{is} \\ $$$$\mathrm{acting}\:\mathrm{on}\:\mathrm{block}\:\mathrm{A},\:\mathrm{therefore}\:\mathrm{a}_{\mathrm{A}} =\mathrm{3g}. \\…

Question-84021

Question Number 84021 by TANMAY PANACEA last updated on 08/Mar/20 Commented by abdomathmax last updated on 09/Mar/20 $${I}\:=\int_{\mathrm{0}} ^{\mathrm{2}} \:\frac{{ln}\left(\mathrm{1}+\mathrm{2}{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }\:\:{let}\:{f}\left({a}\right)\:=\int_{\mathrm{0}} ^{\mathrm{2}} \:\frac{{ln}\left({a}+\mathrm{2}{x}\right)}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\…

Show-that-1-tan3x-3-tan-2-x-1-3tan-2-x-using-cos3x-4cos-4-x-3cosx-sin3x-4sin-3-x-3sinx-Thanks-

Question Number 84019 by mathocean1 last updated on 08/Mar/20 $${Show}\:{that}: \\ $$$$\mathrm{1}\bullet\:\:\:{tan}\mathrm{3}{x}=\frac{\mathrm{3}−{tan}^{\mathrm{2}} {x}}{\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}} \\ $$$${using}\:{cos}\mathrm{3}{x}=\mathrm{4}{cos}^{\mathrm{4}} {x}−\mathrm{3}{cosx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{sin}\mathrm{3}{x}=−\mathrm{4}{sin}^{\mathrm{3}} {x}+\mathrm{3}{sinx} \\ $$$${Thanks}… \\ $$ Commented…