Menu Close

Author: Tinku Tara

sin-x-2sin-2-x-cos-2-x-1-2-csc-x-2sin-2-x-cos-2-x-show-that-x-pi-2-2pin-and-x-cos-1-3-pi-2pin-and-x-cos-1-3-2pin-

Question Number 84002 by M±th+et£s last updated on 08/Mar/20 $$\frac{{sin}\left({x}\right)}{\:\sqrt{\mathrm{2}{sin}^{\mathrm{2}} \left({x}\right)+{cos}^{\mathrm{2}} \left({x}\right)}}\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}={csc}\left({x}\right)\sqrt{\mathrm{2}{sin}^{\mathrm{2}} \left({x}\right)+{cos}^{\mathrm{2}} \left({x}\right)} \\ $$$${show}\:{that} \\ $$$${x}=\left\{\frac{\pi}{\mathrm{2}}+\mathrm{2}\pi{n}\right\}\:{and}\:{x}=\left\{{cos}^{−\mathrm{1}} \left(\sqrt{\mathrm{3}}\right)−\pi+\mathrm{2}\pi{n}\right\} \\ $$$${and}\:{x}=\left\{−{cos}^{−\mathrm{1}} \left(\sqrt{\mathrm{3}}\right)+\mathrm{2}\pi{n}\right\} \\ $$$$ \\…

The-solid-angle-subtended-by-a-spherical-surface-of-radius-R-at-its-centre-is-pi-2-steradian-then-the-surface-area-of-corresponding-spherical-section-is-

Question Number 18463 by Tinkutara last updated on 22/Jul/17 $$\mathrm{The}\:\mathrm{solid}\:\mathrm{angle}\:\mathrm{subtended}\:\mathrm{by}\:\mathrm{a}\:\mathrm{spherical} \\ $$$$\mathrm{surface}\:\mathrm{of}\:\mathrm{radius}\:{R}\:\mathrm{at}\:\mathrm{its}\:\mathrm{centre}\:\mathrm{is}\:\frac{\pi}{\mathrm{2}} \\ $$$$\mathrm{steradian},\:\mathrm{then}\:\mathrm{the}\:\mathrm{surface}\:\mathrm{area}\:\mathrm{of} \\ $$$$\mathrm{corresponding}\:\mathrm{spherical}\:\mathrm{section}\:\mathrm{is} \\ $$ Answered by ajfour last updated on 22/Jul/17…

on-realise-une-suite-infinie-d-epreuves-independantes-chaque-epreuve-resulte-en-un-succes-avec-la-probabilite-p-0-1-ou-un-echec-avec-la-probabilite-q-1-p-soit-A-n-l-evement-obenir-au-moins-un-succ

Question Number 149532 by ArielVyny last updated on 06/Aug/21 $${on}\:{realise}\:{une}\:{suite}\:{infinie}\:{d}'{epreuves} \\ $$$${independantes}.{chaque}\:{epreuve}\:{resulte}\:{en} \\ $$$$\left.{un}\:{succes}\:{avec}\:{la}\:{probabilite}\:{p}\in\right]\mathrm{0};\mathrm{1}\left[\:{ou}\:{un}\right. \\ $$$${echec}\:{avec}\:{la}\:{probabilite}\:{q}=\mathrm{1}−{p}.{soit}\:{A}_{{n}} \\ $$$${l}'{evement}\:“{obenir}\:{au}\:{moins}\:{un}\:{succes}\:{au} \\ $$$${cours}\:{des}\:{premieres}\:{epreuves}.''\:{determiner} \\ $$$${P}\left({A}_{{n}} \right) \\ $$…

Question-18461

Question Number 18461 by b.e.h.i.8.3.417@gmail.com last updated on 22/Jul/17 Answered by mrW1 last updated on 22/Jul/17 $$\left.\mathrm{1}\right) \\ $$$$\Delta_{\mathrm{AA}_{\mathrm{5B}} \mathrm{A}_{\mathrm{60C}} } =\frac{\mathrm{5}}{\mathrm{n}}×\frac{\mathrm{60}}{\mathrm{n}}×\Delta_{\mathrm{ABC}} \\ $$$$\Delta_{\mathrm{BCC}_{\mathrm{5A}} }…

Question-149534

Question Number 149534 by ArielVyny last updated on 06/Aug/21 Answered by Olaf_Thorendsen last updated on 06/Aug/21 $$\mathrm{Exercice}\:\mathrm{1}. \\ $$$$ \\ $$$$\mathrm{Loi}\:\mathrm{geometrique}\:\mathrm{P}\left(\mathrm{X}={k}\right)\:=\:{q}^{{k}−\mathrm{1}} {p} \\ $$$$\mathrm{La}\:\mathrm{fonction}\:\mathrm{de}\:\mathrm{repartition}\:\mathrm{est}\:: \\…

Question-18460

Question Number 18460 by tawa tawa last updated on 21/Jul/17 Answered by sandy_suhendra last updated on 23/Jul/17 $$\mathrm{P}_{\mathrm{bulb}} =\mathrm{5}\:\mathrm{w} \\ $$$$\mathrm{V}_{\mathrm{bulb}} =\mathrm{170}\:\mathrm{V} \\ $$$$\mathrm{I}_{\mathrm{bulb}} \:=\:\frac{\mathrm{P}_{\mathrm{bulb}}…

The-number-of-solutions-of-the-equation-sin-cos-1-sin-cos-in-the-interval-0-4pi-is-

Question Number 18457 by Tinkutara last updated on 21/Jul/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{solutions}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$$\mathrm{sin}\:\theta\:+\:\mathrm{cos}\:\theta\:=\:\mathrm{1}\:+\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{interval}\:\left[\mathrm{0},\:\mathrm{4}\pi\right]\:\mathrm{is} \\ $$ Answered by mrW1 last updated on 21/Jul/17 $$\mathrm{sin}\:\theta\:+\:\mathrm{cos}\:\theta\:=\:\mathrm{1}\:+\:\mathrm{sin}\:\theta\:\mathrm{cos}\:\theta \\…