Question Number 149485 by abdurehime last updated on 05/Aug/21 $$\mathrm{proof}\:\mathrm{that}\:\mathrm{1}=\mathrm{2}?? \\ $$ Answered by Olaf_Thorendsen last updated on 05/Aug/21 $$\mathrm{if}\:\mathrm{A}\:=\:\mathrm{B} \\ $$$$\mathrm{A}×\mathrm{A}\:=\:\mathrm{A}×\mathrm{B} \\ $$$$\mathrm{A}^{\mathrm{2}} \:=\:\mathrm{AB}\:=\:\mathrm{BA}…
Question Number 18415 by tawa tawa last updated on 20/Jul/17 $$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{magnetic}\:\mathrm{field}\:\mathrm{produced}\:\mathrm{at}\:\mathrm{ground}\:\mathrm{level}\:\mathrm{by}\:\mathrm{a}\:\mathrm{15A}\:\mathrm{current} \\ $$$$\mathrm{flowing}\:\mathrm{in}\:\mathrm{a}\:\mathrm{long}\:\mathrm{horizontal}\:\mathrm{wire}\:\mathrm{suspended}\:\mathrm{at}\:\mathrm{a}\:\mathrm{height}\:\mathrm{of}\:\mathrm{7}.\mathrm{5m} \\ $$ Commented by tawa tawa last updated on 20/Jul/17 $$\mathrm{please}\:\mathrm{help}. \\…
Question Number 149481 by mathdanisur last updated on 05/Aug/21 Answered by mr W last updated on 05/Aug/21 $${say}\:{AB}={CK}={x},\:{BM}={BK}=\mathrm{1} \\ $$$${AC}={x}−\mathrm{1}+{x}=\mathrm{2}{x}−\mathrm{1} \\ $$$$\left(\mathrm{2}{x}−\mathrm{1}\right)^{\mathrm{2}} ={x}^{\mathrm{2}} +\left({x}+\mathrm{1}\right)^{\mathrm{2}} \\…
Question Number 18411 by Tinkutara last updated on 20/Jul/17 $$\mathrm{A}\:\mathrm{glass}\:\mathrm{bulb}\:\mathrm{contains}\:\mathrm{2}.\mathrm{24}\:\mathrm{L}\:\mathrm{of}\:\mathrm{H}_{\mathrm{2}} \:\mathrm{and} \\ $$$$\mathrm{1}.\mathrm{12}\:\mathrm{L}\:\mathrm{of}\:\mathrm{D}_{\mathrm{2}} \:\mathrm{at}\:\mathrm{S}.\mathrm{T}.\mathrm{P}.\:\mathrm{It}\:\mathrm{is}\:\mathrm{connected}\:\mathrm{to} \\ $$$$\mathrm{a}\:\mathrm{fully}\:\mathrm{evacuated}\:\mathrm{bulb}\:\mathrm{by}\:\mathrm{a}\:\mathrm{stopcock} \\ $$$$\mathrm{with}\:\mathrm{a}\:\mathrm{small}\:\mathrm{opening}.\:\mathrm{The}\:\mathrm{stopcock}\:\mathrm{is} \\ $$$$\mathrm{opened}\:\mathrm{for}\:\mathrm{sometime}\:\mathrm{and}\:\mathrm{then}\:\mathrm{closed}. \\ $$$$\mathrm{The}\:\mathrm{first}\:\mathrm{bulb}\:\mathrm{now}\:\mathrm{contains}\:\mathrm{0}.\mathrm{1}\:\mathrm{g}\:\mathrm{of}\:\mathrm{D}_{\mathrm{2}} . \\ $$$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{percentage}\:\mathrm{composition}…
Question Number 83943 by jagoll last updated on 08/Mar/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{sec}\:\mathrm{6x}−\mathrm{cos}\:\mathrm{2x}}{\mathrm{2x}\:\mathrm{tan}\:\mathrm{5x}} \\ $$$$ \\ $$ Answered by jagoll last updated on 08/Mar/20 Terms of Service…
Question Number 149478 by mathdanisur last updated on 05/Aug/21 $${Solve}\:{for}\:{real}\:{numbers}: \\ $$$${x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}{sin}\boldsymbol{{y}}−\mathrm{4}{cos}\boldsymbol{{y}}\:+\:\mathrm{6}\:=\:\mathrm{0} \\ $$ Commented by iloveisrael last updated on 06/Aug/21 $$\Delta\geqslant\mathrm{0} \\ $$$$\mathrm{3sin}\:\mathrm{y}+\mathrm{4cosy}−\mathrm{6}\geqslant−\mathrm{1}…
Question Number 83941 by john santu last updated on 08/Mar/20 $$\mathrm{If}\:\sqrt[{\mathrm{3}}]{\mathrm{2}\:}\:+\:\sqrt[{\mathrm{3}\:}]{\mathrm{4}}\:+\:\sqrt[{\mathrm{3}\:}]{\mathrm{8}\:}\:=\:\mathrm{x}\: \\ $$$$\mathrm{then}\:\mathrm{x}^{\mathrm{3}} −\mathrm{6x}^{\mathrm{2}} +\mathrm{6x}+\mathrm{6}\:=\:? \\ $$ Answered by $@ty@m123 last updated on 08/Mar/20 $$\:^{\mathrm{3}}…
Question Number 18402 by Tinkutara last updated on 20/Jul/17 $$\mathrm{If}\:{P}_{{n}} \:=\:\mathrm{cos}^{{n}} \:\theta\:+\:\mathrm{sin}^{{n}} \:\theta,\:\theta\:\in\:\left[\mathrm{0},\:\frac{\pi}{\mathrm{2}}\right],\:{n}\:\in \\ $$$$\left(−\infty,\:\mathrm{2}\right),\:\mathrm{then}\:\mathrm{minimum}\:\mathrm{of}\:{P}_{{n}} \:\mathrm{will}\:\mathrm{be} \\ $$$$\left(\mathrm{1}\right)\:\mathrm{1} \\ $$$$\left(\mathrm{2}\right)\:\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left(\mathrm{3}\right)\:\sqrt{\mathrm{2}} \\ $$$$\left(\mathrm{4}\right)\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\…
Question Number 149474 by mathdanisur last updated on 05/Aug/21 $${x};{y};{z}\geqslant\mathrm{0}\:\:\mathrm{and}\:\:{x}+{y}+{z}=\mathrm{3}\:\:\mathrm{prove}\:\mathrm{that}: \\ $$$$\sqrt[{\mathrm{12}}]{{x}^{\mathrm{5}} }\:+\:\sqrt[{\mathrm{12}}]{{y}^{\mathrm{5}} }\:+\:\sqrt[{\mathrm{12}}]{{z}^{\mathrm{5}} }\:\geqslant\:{xy}\:+\:{yz}\:+\:{zx} \\ $$ Commented by dumitrel last updated on 06/Aug/21 $${hint}\:?…
Question Number 18400 by virus last updated on 20/Jul/17 Commented by virus last updated on 21/Jul/17 $${please}\:{solve}\:{this} \\ $$ Terms of Service Privacy Policy Contact:…