Menu Close

Author: Tinku Tara

du-u-u-2-

Question Number 83893 by sahnaz last updated on 07/Mar/20 $$\int\frac{\mathrm{du}}{\mathrm{u}−\mathrm{u}^{\mathrm{2}} } \\ $$ Commented by abdomathmax last updated on 07/Mar/20 $$\int\:\:\frac{{du}}{{u}−{u}^{\mathrm{2}} }\:=\int\:\:\frac{{du}}{{u}\left(\mathrm{1}−{u}\right)}\:=\int\:\:\left(\frac{\mathrm{1}}{{u}}+\frac{\mathrm{1}}{\mathrm{1}−{u}}\right){du} \\ $$$$={ln}\mid\frac{{u}}{\mathrm{1}−{u}}\mid\:+{C} \\…

Question-149425

Question Number 149425 by help last updated on 05/Aug/21 Answered by dumitrel last updated on 05/Aug/21 $${x}>\mathrm{0};{x}\neq\mathrm{1} \\ $$$$\sqrt[{\mathrm{4}}]{{log}_{\mathrm{3}} {x}}={y}>\mathrm{0}\Rightarrow{x}=\mathrm{3}^{{y}^{\mathrm{4}} } \\ $$$$\mathrm{9}^{{y}} −\mathrm{4}{x}^{\frac{\mathrm{1}}{{y}^{\mathrm{3}} }}…

To-the-developers-of-TinkuTara-problem-1-i-get-no-notifications-when-my-posts-are-updated-problem-2-i-can-edit-my-post-see-picture-1-but-the-content-is-not-visiable-see-picture-2-

Question Number 83886 by mr W last updated on 07/Mar/20 $${To}\:{the}\:{developers}\:{of}\:{TinkuTara}: \\ $$$${problem}\:\mathrm{1}: \\ $$$${i}\:{get}\:{no}\:{notifications}\:{when}\:{my}\:{posts} \\ $$$${are}\:{updated}. \\ $$$$ \\ $$$${problem}\:\mathrm{2}: \\ $$$${i}\:{can}\:{edit}\:{my}\:{post},\:{see}\:{picture}\:\mathrm{1},\:{but} \\ $$$${the}\:{content}\:{is}\:{not}\:{visiable},\:{see}\:{picture}\:\mathrm{2}.…

2207-1-2207-1-2207-1-8-

Question Number 149423 by mathdanisur last updated on 05/Aug/21 $$\sqrt[{\mathrm{8}}]{\mathrm{2207}\:-\:\frac{\mathrm{1}}{\mathrm{2207}\:-\:\frac{\mathrm{1}}{\mathrm{2207}\:-\:…}}}\:\:=\:? \\ $$ Answered by dumitrel last updated on 05/Aug/21 $${x}=\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−\frac{\mathrm{1}}{\mathrm{2207}−….}}\Rightarrow{x}=\mathrm{2207}−\frac{\mathrm{1}}{{x}}\Rightarrow{x}=\frac{\mathrm{2207}+\mathrm{21}\centerdot\mathrm{47}\sqrt{\mathrm{5}}}{\mathrm{2}} \\ $$$$\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{16}} =…=\frac{\mathrm{2}^{\mathrm{15}} \left(\mathrm{2207}+\mathrm{21}\centerdot\mathrm{47}\sqrt{\mathrm{5}}\right)}{\mathrm{2}^{\mathrm{16}} }={x}\Rightarrow\sqrt[{\mathrm{8}}]{\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{2}}\right)^{\mathrm{16}}…