Menu Close

Author: Tinku Tara

A-sky-diver-of-mass-m-drops-out-with-an-initial-velocity-v-0-0-Find-the-law-by-which-the-sky-diver-s-speed-varies-before-the-parachute-is-opened-if-the-drag-is-proportional-to-the-sky-diver-s-spee

Question Number 18264 by Tinkutara last updated on 17/Jul/17 $$\mathrm{A}\:\mathrm{sky}\:\mathrm{diver}\:\mathrm{of}\:\mathrm{mass}\:{m}\:\mathrm{drops}\:\mathrm{out}\:\mathrm{with} \\ $$$$\mathrm{an}\:\mathrm{initial}\:\mathrm{velocity}\:{v}_{\mathrm{0}} \:=\:\mathrm{0}.\:\mathrm{Find}\:\mathrm{the}\:\mathrm{law} \\ $$$$\mathrm{by}\:\mathrm{which}\:\mathrm{the}\:\mathrm{sky}\:\mathrm{diver}'\mathrm{s}\:\mathrm{speed}\:\mathrm{varies} \\ $$$$\mathrm{before}\:\mathrm{the}\:\mathrm{parachute}\:\mathrm{is}\:\mathrm{opened}\:\mathrm{if}\:\mathrm{the} \\ $$$$\mathrm{drag}\:\mathrm{is}\:\mathrm{proportional}\:\mathrm{to}\:\mathrm{the}\:\mathrm{sky}\:\mathrm{diver}'\mathrm{s} \\ $$$$\mathrm{speed}.\:\mathrm{Also}\:\mathrm{solve}\:\mathrm{the}\:\mathrm{problem}\:\mathrm{when}\:\mathrm{the} \\ $$$$\mathrm{sky}\:\mathrm{diver}'\mathrm{s}\:\mathrm{initial}\:\mathrm{velocity}\:\mathrm{has}\:\mathrm{horizontal} \\ $$$$\mathrm{component}\:{v}_{\mathrm{0}}…

A-point-P-is-located-above-an-inclined-plane-It-is-possible-to-reach-the-plane-by-sliding-under-gravity-down-a-straight-frictionless-wire-joining-to-some-point-P-on-the-plane-How-should-P-be-cho

Question Number 18262 by Tinkutara last updated on 17/Jul/17 $$\mathrm{A}\:\mathrm{point}\:{P}\:\mathrm{is}\:\mathrm{located}\:\mathrm{above}\:\mathrm{an}\:\mathrm{inclined} \\ $$$$\mathrm{plane}.\:\mathrm{It}\:\mathrm{is}\:\mathrm{possible}\:\mathrm{to}\:\mathrm{reach}\:\mathrm{the}\:\mathrm{plane} \\ $$$$\mathrm{by}\:\mathrm{sliding}\:\mathrm{under}\:\mathrm{gravity}\:\mathrm{down}\:\mathrm{a}\:\mathrm{straight} \\ $$$$\mathrm{frictionless}\:\mathrm{wire}\:\mathrm{joining}\:\mathrm{to}\:\mathrm{some}\:\mathrm{point} \\ $$$${P}\:'\:\mathrm{on}\:\mathrm{the}\:\mathrm{plane}.\:\mathrm{How}\:\mathrm{should}\:{P}\:'\:\mathrm{be} \\ $$$$\mathrm{chosen}\:\mathrm{so}\:\mathrm{as}\:\mathrm{to}\:\mathrm{minimize}\:\mathrm{the}\:\mathrm{time} \\ $$$$\mathrm{taken}? \\ $$ Commented…

What-is-the-maximum-angle-to-the-horizontal-at-which-a-stone-can-be-thrown-and-always-be-moving-away-from-the-thrower-

Question Number 18261 by Tinkutara last updated on 17/Jul/17 $$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{maximum}\:\mathrm{angle}\:\mathrm{to}\:\mathrm{the} \\ $$$$\mathrm{horizontal}\:\mathrm{at}\:\mathrm{which}\:\mathrm{a}\:\mathrm{stone}\:\mathrm{can}\:\mathrm{be} \\ $$$$\mathrm{thrown}\:\mathrm{and}\:\mathrm{always}\:\mathrm{be}\:\mathrm{moving}\:\mathrm{away} \\ $$$$\mathrm{from}\:\mathrm{the}\:\mathrm{thrower}? \\ $$ Answered by ajfour last updated on 26/Jul/17…

Question-149331

Question Number 149331 by Samimsultani last updated on 04/Aug/21 Commented by john_santu last updated on 04/Aug/21 $$\mathrm{may}\:\mathrm{be}\:\mathrm{x}=\sqrt[{\mathrm{3}}]{\mathrm{7}+\sqrt{\mathrm{5}}}\:−\sqrt[{\mathrm{3}}]{\mathrm{7}−\sqrt{\mathrm{5}}}\: \\ $$ Commented by amin96 last updated on…

Let-x-y-are-two-different-real-numbers-satisfy-the-equation-y-4-x-4-and-x-4-y-4-The-value-of-x-3-y-3-mod-x-3-y-3-is-

Question Number 83791 by jagoll last updated on 06/Mar/20 $$\mathrm{Let}\:\mathrm{x},\:\mathrm{y}\:\mathrm{are}\:\mathrm{two}\:\mathrm{different}\:\mathrm{real} \\ $$$$\mathrm{numbers}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}\: \\ $$$$\sqrt{\mathrm{y}+\mathrm{4}}\:=\:\mathrm{x}−\mathrm{4}\:\mathrm{and}\:\sqrt{\mathrm{x}+\mathrm{4}}\:=\:\mathrm{y}−\mathrm{4}. \\ $$$$\mathrm{The}\:\mathrm{value}\:\mathrm{of}\:\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} \:\mathrm{mod}\left(\mathrm{x}^{\mathrm{3}} \mathrm{y}^{\mathrm{3}} \right)\:\mathrm{is} \\ $$ Commented by mr…

x-2-log-5-x-x-5x-4-log-x-5-x-

Question Number 83786 by jagoll last updated on 06/Mar/20 $$\frac{{x}^{\mathrm{2}} }{\mathrm{log}_{\left(\mathrm{5}−{x}\right)} \:\left({x}\right)}\:\leqslant\:\left(\mathrm{5}{x}−\mathrm{4}\right)\:\mathrm{log}_{{x}} \:\left(\mathrm{5}−{x}\right)\: \\ $$ Answered by john santu last updated on 06/Mar/20 $${x}^{\mathrm{2}} \:\mathrm{log}_{{x}}…