Menu Close

Author: Tinku Tara

A-value-of-satisfying-4cos-2-sin-2sin-2-3sin-is-1-9pi-10-2-pi-10-3-13pi-10-4-17pi-10-

Question Number 18092 by Tinkutara last updated on 15/Jul/17 $$\mathrm{A}\:\mathrm{value}\:\mathrm{of}\:\theta\:\mathrm{satisfying} \\ $$$$\mathrm{4cos}^{\mathrm{2}} \theta\mathrm{sin}\theta\:−\:\mathrm{2sin}^{\mathrm{2}} \theta\:=\:\mathrm{3sin}\theta\:\mathrm{is} \\ $$$$\left(\mathrm{1}\right)\:\frac{\mathrm{9}\pi}{\mathrm{10}} \\ $$$$\left(\mathrm{2}\right)\:\frac{\pi}{\mathrm{10}} \\ $$$$\left(\mathrm{3}\right)\:−\frac{\mathrm{13}\pi}{\mathrm{10}} \\ $$$$\left(\mathrm{4}\right)\:−\frac{\mathrm{17}\pi}{\mathrm{10}} \\ $$ Answered…

Which-of-the-following-statement-s-is-are-correct-1-cos-sin1-gt-sin-cos1-2-cos-sin1-5-gt-sin-cos1-5-3-cos-sin-7pi-18-gt-sin-cos-7pi-18-4-cos-sin-5pi-18-gt-sin-cos-

Question Number 18091 by Tinkutara last updated on 15/Jul/17 $$\mathrm{Which}\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{statement}\left(\mathrm{s}\right) \\ $$$$\mathrm{is}/\mathrm{are}\:\mathrm{correct}? \\ $$$$\left(\mathrm{1}\right)\:\mathrm{cos}\left(\mathrm{sin1}\right)\:>\:\mathrm{sin}\left(\mathrm{cos1}\right) \\ $$$$\left(\mathrm{2}\right)\:\mathrm{cos}\left(\mathrm{sin1}.\mathrm{5}\right)\:>\:\mathrm{sin}\left(\mathrm{cos1}.\mathrm{5}\right) \\ $$$$\left(\mathrm{3}\right)\:\mathrm{cos}\left(\mathrm{sin}\frac{\mathrm{7}\pi}{\mathrm{18}}\right)\:>\:\mathrm{sin}\left(\mathrm{cos}\frac{\mathrm{7}\pi}{\mathrm{18}}\right) \\ $$$$\left(\mathrm{4}\right)\:\mathrm{cos}\left(\mathrm{sin}\frac{\mathrm{5}\pi}{\mathrm{18}}\right)\:>\:\mathrm{sin}\left(\mathrm{cos}\frac{\mathrm{5}\pi}{\mathrm{18}}\right) \\ $$ Answered by Tinkutara…

if-dx-1-x-2-1012-2-x-2-3012-1-2012-2-1-f-x-then-find-f-x-

Question Number 149156 by gsk2684 last updated on 03/Aug/21 $${if}\:\int\frac{{dx}}{\:\sqrt[{\mathrm{2012}}]{\left(\mathrm{1}+{x}^{\mathrm{2}} \right)^{\mathrm{1012}} \left(\mathrm{2}+{x}^{\mathrm{2}} \right)^{\mathrm{3012}} }}=\frac{\alpha}{\mathrm{2}\beta}\left(\mathrm{1}−{f}\left({x}\right)\right)^{\frac{\beta}{\alpha}} \\ $$$${then}\:{find}\:\alpha,\beta,{f}\left({x}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com

Show-that-the-differetial-equation-is-a-Sturm-Louville-equation-x-1-y-1-1-4-x-3-y-0-y-1-0-y-t-0-Solve-the-equation-to-determine-the-eigenvalue-and-the-corresponding-eigen-functions

Question Number 83619 by Jidda28 last updated on 04/Mar/20 $${Show}\:{that}\:{the}\:{differetial}\:{equation}\:{is}\:{a}\:{Sturm}−{Louville}\:{equation} \\ $$$$\left({x}^{−\mathrm{1}} {y}^{\mathrm{1}} \right)^{\mathrm{1}} +\left(\mathrm{4}+\lambda\right){x}^{−\mathrm{3}} {y}=\mathrm{0},\:\:{y}\left(\mathrm{1}\right)=\mathrm{0},{y}\left(\varrho^{{t}} \right)=\mathrm{0} \\ $$$${Solve}\:{the}\:{equation}\:{to}\:{determine}\:{the}\:{eigenvalue}\:{and}\:{the}\:{corresponding}\:{eigen}\:{functions}\:{of}\:{the}\:{problem}. \\ $$$${Show}\:{also}\:{that}\:{the}\:{set}\:{of}\:{eigen}\:{function}\:{forms}\:{and}\:{orthogonal}\:{and}\:{orthonormal}\:{set}. \\ $$$$ \\ $$$${Thanks}\:{as}\:{usual}.…

find-the-coefficient-of-x-50-in-the-1-x-1000-2x-1-x-999-3x-2-1-x-998-

Question Number 149155 by gsk2684 last updated on 03/Aug/21 $${find}\:{the}\:{coefficient}\:{of}\:{x}^{\mathrm{50}} \:{in}\:{the}\: \\ $$$$\left(\mathrm{1}+{x}\right)^{\mathrm{1000}} +\mathrm{2}{x}\left(\mathrm{1}+{x}\right)^{\mathrm{999}} +\mathrm{3}{x}^{\mathrm{2}} \left(\mathrm{1}+{x}\right)^{\mathrm{998}} +…\infty\: \\ $$ Terms of Service Privacy Policy Contact:…

lim-n-1-n-1-1-2-1-3-1-n-

Question Number 149151 by mathdanisur last updated on 03/Aug/21 $$\underset{\boldsymbol{{n}}\rightarrow\infty} {{lim}}\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:+\:…\:+\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\right)\:=\:? \\ $$ Answered by Kamel last updated on 03/Aug/21 $${L}=\underset{\boldsymbol{{n}}\rightarrow\infty} {{lim}}\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\:\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\:+\:…\:+\:\frac{\mathrm{1}}{\:\sqrt{{n}}}\right)\: \\ $$$$\:\:\:=\underset{{n}\rightarrow+\infty} {{lim}}\frac{\mathrm{1}}{\:\sqrt{{n}}}\underset{{k}=\mathrm{1}}…