Menu Close

Author: Tinku Tara

A-mango-in-a-tree-is-located-30-40-from-the-point-of-projection-of-stone-Find-the-minimum-speed-and-the-angle-of-projevtion-of-the-stone-so-as-to-hit-the-mango-

Question Number 18077 by virus last updated on 15/Jul/17 $${A}\:{mango}\:{in}\:{a}\:{tree}\:{is}\:{located}\:\left(\mathrm{30},\mathrm{40}\right)\:{from}\:{the} \\ $$$${point}\:{of}\:{projection}\:{of}\:{stone}.{Find}\:{the}\: \\ $$$${minimum}\:{speed}\:{and}\:{the}\:{angle}\:{of}\:{projevtion} \\ $$$${of}\:{the}\:{stone}\:{so}\:{as}\:{to}\:{hit}\:{the}\:{mango} \\ $$ Answered by ajfour last updated on 15/Jul/17…

ln-cosx-dx-

Question Number 149150 by mathdanisur last updated on 03/Aug/21 $$\int\:{ln}\:\left({cosx}\right)\:{dx}\:=\:? \\ $$ Answered by puissant last updated on 03/Aug/21 $$\mathrm{K}=\mathrm{xln}\left(\mathrm{cosx}\right)+\int\mathrm{xtanxdx} \\ $$$$=\mathrm{xln}\left(\mathrm{cosx}\right)+\int\mathrm{x}\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mid\mathrm{B}_{\mathrm{2n}} \mid\frac{\mathrm{2}^{\mathrm{2n}}…

1-x-1-5-6-3-6-x-x-2-gt-1-1-x-1-

Question Number 83610 by john santu last updated on 04/Mar/20 $$\frac{\mathrm{1}}{\mathrm{x}−\mathrm{1}}\:+\:\frac{\mathrm{5}}{\mathrm{6}−\mathrm{3}\sqrt{\mathrm{6}+\mathrm{x}−\mathrm{x}^{\mathrm{2}} }}\:>\:\frac{\mathrm{1}}{\mathrm{1}+\mid\mathrm{x}−\mathrm{1}\mid} \\ $$ Commented by john santu last updated on 04/Mar/20 $$\mathrm{ans}\::\:\left[−\mathrm{2},\:−\mathrm{1}\right)\:\cup\:\left(\mathrm{1},\:\frac{\mathrm{6}}{\mathrm{5}}\right)\:\cup\:\left(\mathrm{2},\mathrm{3}\:\right] \\ $$…

17-x-1-4-17-x-1-4-2-find-x-

Question Number 83608 by john santu last updated on 04/Mar/20 $$\sqrt[{\mathrm{4}\:\:}]{\mathrm{17}+\mathrm{x}}\:+\:\sqrt[{\mathrm{4}\:\:}]{\mathrm{17}−\mathrm{x}}\:=\:\mathrm{2}\: \\ $$$$\mathrm{find}\:\mathrm{x}\: \\ $$ Commented by mr W last updated on 04/Mar/20 $${LHS}\geqslant\sqrt[{\mathrm{4}}]{\mathrm{2}×\mathrm{17}}>\sqrt[{\mathrm{4}}]{\mathrm{2}×\mathrm{16}}>\sqrt[{\mathrm{4}}]{\mathrm{16}}=\mathrm{2}={RHS} \\…

cos-2-70-sin-2-70-sin-100-sin-20-

Question Number 149141 by mathdanisur last updated on 03/Aug/21 $$\frac{{cos}^{\mathrm{2}} \left(\mathrm{70}\right)\:-\:{sin}^{\mathrm{2}} \left(\mathrm{70}\right)}{{sin}\left(\mathrm{100}\right)\:+\:{sin}\left(\mathrm{20}\right)}\:=\:? \\ $$ Commented by liberty last updated on 03/Aug/21 $$=\frac{\left(\mathrm{cos}\:\mathrm{70}°−\mathrm{sin}\:\mathrm{70}°\right)\left(\mathrm{cos}\:\mathrm{70}°+\mathrm{sin}\:\mathrm{70}°\right)}{\mathrm{sin}\:\mathrm{100}°+\mathrm{sin}\:\mathrm{20}°} \\ $$$$=\frac{\left(\mathrm{sin}\:\mathrm{20}°−\mathrm{sin}\:\mathrm{70}°\right)\left(\mathrm{sin}\:\mathrm{20}°+\mathrm{sin}\:\mathrm{70}°\right)}{\mathrm{2sin}\:\mathrm{60}°\mathrm{cos}\:\mathrm{40}°} \\…

a-car-drives-at-a-speed-of-120-km-hr-it-starts-to-brake-at-a-road-mark-A-and-passes-a-road-mark-B-at-a-speed-of-60-km-hr-acceleration-is-constant-the-distance-AB-is-4-km-1-calculate-the-accelerat

Question Number 83606 by MJS last updated on 04/Mar/20 $$\mathrm{a}\:\mathrm{car}\:\mathrm{drives}\:\mathrm{at}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of}\:\mathrm{120}\:\mathrm{km}/\mathrm{hr} \\ $$$$\mathrm{it}\:\mathrm{starts}\:\mathrm{to}\:\mathrm{brake}\:\mathrm{at}\:\mathrm{a}\:\mathrm{road}\:\mathrm{mark}\:{A}\:\mathrm{and} \\ $$$$\mathrm{passes}\:\mathrm{a}\:\mathrm{road}\:\mathrm{mark}\:{B}\:\mathrm{at}\:\mathrm{a}\:\mathrm{speed}\:\mathrm{of} \\ $$$$\mathrm{60}\:\mathrm{km}/\mathrm{hr}.\:\mathrm{acceleration}\:\mathrm{is}\:\mathrm{constant}.\:\mathrm{the} \\ $$$$\mathrm{distance}\:{AB}\:\mathrm{is}\:\mathrm{4}\:\mathrm{km}. \\ $$$$\left(\mathrm{1}\right)\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{acceleration} \\ $$$$\left(\mathrm{2}\right)\:\mathrm{calculate}\:\mathrm{the}\:\mathrm{time}\:\mathrm{between}\:{A}\:\mathrm{and}\:{B} \\ $$$$\left(\mathrm{3}\right)\:\mathrm{there}\:\mathrm{are}\:{n}\:\mathrm{reflector}\:\mathrm{posts}\:\mathrm{between}\:{A} \\…

x-y-1-0-x-y-1-0-2x-3y-

Question Number 149140 by mathdanisur last updated on 03/Aug/21 $$\begin{cases}{\mid{x}\mid\:+\:{y}\:-\:\mathrm{1}\:=\:\mathrm{0}}\\{{x}\:-\:{y}\:-\:\mathrm{1}\:=\:\mathrm{0}}\end{cases}\:\:\:\Rightarrow\:\:\mathrm{2}{x}\:-\:\mathrm{3}{y}\:=\:? \\ $$ Commented by liberty last updated on 03/Aug/21 $$\mathrm{y}=\:\mathrm{x}−\mathrm{1} \\ $$$$\Rightarrow\mid\mathrm{x}\mid+\mathrm{x}−\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{case}\left(\mathrm{1}\right)\:\mathrm{x}<\mathrm{0}\:\Rightarrow−\mathrm{x}+\mathrm{x}−\mathrm{2}=\mathrm{0}\:,\mathrm{no}\:\mathrm{solution} \\…

need-help-When-typing-with-microsoft-word-i-face-some-difficulties-like-when-typing-lim-x-0-f-x-it-turns-to-lim-x-0-f-x-and-r-0-n-a-n-turns-to-r-0-n-a-n-please-how-do-i-rectif

Question Number 83604 by Rio Michael last updated on 04/Mar/20 $$\mathrm{need}\:\mathrm{help}.\:\mathrm{When}\:\mathrm{typing}\:\mathrm{with}\:\mathrm{microsoft}\:\mathrm{word} \\ $$$$\mathrm{i}\:\mathrm{face}\:\mathrm{some}\:\mathrm{difficulties}\:\mathrm{like}\:\mathrm{when}\:\mathrm{typing}\: \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{f}\left({x}\right)\:\mathrm{it}\:\mathrm{turns}\:\mathrm{to}\:\mathrm{lim}_{{x}\rightarrow\mathrm{0}} \:{f}\left({x}\right)\:\mathrm{and}\:\underset{{r}=\mathrm{0}} {\overset{{n}} {\sum}}{a}_{{n}} \: \\ $$$$\mathrm{turns}\:\mathrm{to}\:\sum_{{r}=\mathrm{0}} ^{{n}} {a}_{{n}} \:\:\mathrm{please}\:\mathrm{how}\:\mathrm{do}\:\mathrm{i}\:\mathrm{rectify}\:\mathrm{this}…

ai-If-is-the-angle-in-the-fourth-quadrant-satisfying-the-equation-cot-2-4-find-the-value-of-the-function-f-1-5-sec-cosec-aii-Prove-that-1-cos-1-c

Question Number 18069 by tawa tawa last updated on 14/Jul/17 $$\left.\mathrm{ai}\right)\:\:\mathrm{If}\:\theta\:\mathrm{is}\:\mathrm{the}\:\mathrm{angle}\:\mathrm{in}\:\mathrm{the}\:\mathrm{fourth}\:\mathrm{quadrant}\:\mathrm{satisfying}\:\mathrm{the}\:\mathrm{equation}\::\:\mathrm{cot}^{\mathrm{2}} \theta\:=\:\mathrm{4} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the}\:\mathrm{function}:\:\:\mathrm{f}\left(\theta\right)\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\:\left(\mathrm{sec}\theta\:−\:\mathrm{cosec}\theta\right) \\ $$$$\left.\mathrm{aii}\right)\:\:\mathrm{Prove}\:\mathrm{that}:\:\:\:\sqrt{\frac{\mathrm{1}\:+\:\mathrm{cos}\theta}{\mathrm{1}\:−\:\mathrm{cos}\theta}}\:\:=\:\:\mathrm{cosec}\theta\:+\:\mathrm{cot}\theta,\:\:\:\:\:\:\:\:\mathrm{if}\:\:\mathrm{cos}\theta\:\neq\:\mathrm{1} \\ $$$$\left(\mathrm{b}\right)\:\:\:\mathrm{Let}\:\:\mathrm{R}\:\mathrm{be}\:\mathrm{a}\:\mathrm{positive}\:\mathrm{real}\:\mathrm{number}\:\mathrm{and}\:\mathrm{let}\:\alpha\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{inequality}\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\mathrm{0}\:<\:\alpha\:<\:\mathrm{360}.\:\mathrm{express}\:\mathrm{the}\:\mathrm{function}\:\:\mathrm{2sin}\theta\:+\:\mathrm{cos}\theta\:\mathrm{in}\:\mathrm{the}\:\mathrm{form}\:\:\mathrm{Rsin}\left(\theta\:+\:\alpha\right). \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathrm{Hence},\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\theta\:\mathrm{between}\:\mathrm{0}\:\mathrm{and}\:\mathrm{360}\:\mathrm{which}\:\mathrm{satisfy}\:\mathrm{the}\:\mathrm{equation}. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{3cos}\theta\:+\:\mathrm{6sin}\theta\:=\:\mathrm{1} \\…

if-z-z-1-3-i-find-

Question Number 149142 by mathdanisur last updated on 03/Aug/21 $${if}\:\:\:{z}\:+\:\mid{z}\mid\:=\:\mathrm{1}\:+\:\sqrt{\mathrm{3}}\:\boldsymbol{{i}} \\ $$$${find}\:\:\:\boldsymbol{\varphi}\:=\:? \\ $$ Answered by liberty last updated on 03/Aug/21 $$\mathrm{z}=\mathrm{a}+\mathrm{b}{i} \\ $$$$\mid\mathrm{z}\mid=\sqrt{\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}}…