Question Number 83597 by dennis kenneth last updated on 04/Mar/20 $$\int_{\mathrm{0}} ^{\mathrm{2}} \left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{2}\right){dx} \\ $$ Commented by Jidda28 last updated on 04/Mar/20 $$\left.=\:\:{x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}}…
Question Number 149129 by Samimsultani last updated on 03/Aug/21 Commented by ajfour last updated on 03/Aug/21 $${isn}'{t}\:\:\boldsymbol{\div}\:\:{same}\:{as}\:/\: \\ $$ Answered by puissant last updated on…
Question Number 149128 by liberty last updated on 03/Aug/21 $$ \\ $$does anyone in this group have monbusho test questions? Terms of Service Privacy Policy…
Question Number 83590 by Tony Lin last updated on 04/Mar/20 $${transform}\:{the}\:{ellipse}\:\frac{{x}^{\mathrm{2}} }{{a}^{\mathrm{2}} }+\frac{{y}^{\mathrm{2}} }{{b}^{\mathrm{2}} }=\mathrm{1}\:{to} \\ $$$${the}\:{polar}\:{equation}\:{r}=\:\frac{{a}\left(\mathrm{1}−{e}^{\mathrm{2}} \right)}{\mathrm{1}+{ecos}\theta} \\ $$$${a}:\:{semimajor}\:{axis} \\ $$$${e}:\:{eccentricity} \\ $$ Commented…
Question Number 83591 by jagoll last updated on 04/Mar/20 $$\mathrm{3x}^{\mathrm{2}} −\mathrm{x}+\left(\mathrm{t}^{\mathrm{2}} −\mathrm{4t}+\mathrm{3}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{has}\:\mathrm{a}\:\mathrm{roots}\:\mathrm{sin}\:\alpha\:\mathrm{and}\:\mathrm{cos}\:\alpha. \\ $$$$\mathrm{find}\:\sqrt{\mathrm{t}^{\mathrm{2}} −\mathrm{4t}+\mathrm{5}} \\ $$ Commented by jagoll last updated on…
Question Number 149127 by learner001 last updated on 03/Aug/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 18053 by mondodotto@gmail.com last updated on 14/Jul/17 Commented by prakash jain last updated on 14/Jul/17 $$\mathrm{can}\:\mathrm{u}\:\mathrm{please}\:\mathrm{type}\:\mathrm{question}?\:\mathrm{it}\:\mathrm{is}\:\mathrm{very} \\ $$$$\mathrm{difficult}\:\mathrm{to}\:\mathrm{read}\:\mathrm{image}. \\ $$ Commented by mondodotto@gmail.com…
Question Number 149121 by mathdanisur last updated on 03/Aug/21 $$\frac{\mathrm{2}\centerdot\left({cos}\mathrm{85}°\:+\:\boldsymbol{{i}}{sin}\mathrm{85}°\right)}{\:\sqrt{\mathrm{2}}\centerdot\left({cos}\mathrm{40}°\:+\:\boldsymbol{{i}}{sin}\mathrm{40}°\right)}\:=\:? \\ $$ Answered by bramlexs22 last updated on 03/Aug/21 $$\left.\sqrt{\mathrm{2}}\:\mathrm{e}^{\mathrm{i}\left(\mathrm{85}°−\mathrm{40}°\right.} \right)=\sqrt{\mathrm{2}}\:\mathrm{e}^{\mathrm{i45}°} =\sqrt{\mathrm{2}}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}+\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}{i}\right) \\ $$$$\:\:\:=\mathrm{1}+{i} \\…
Question Number 149120 by bramlexs22 last updated on 03/Aug/21 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 83587 by jagoll last updated on 04/Mar/20 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{3sin}\:\pi\mathrm{x}−\mathrm{sin}\:\mathrm{3}\pi\mathrm{x}}{\mathrm{x}^{\mathrm{3}} } \\ $$ Commented by john santu last updated on 04/Mar/20 $$\mathrm{let}\:\mathrm{u}\:=\:\pi\mathrm{x}\:\Rightarrow\:\mathrm{x}=\:\frac{\mathrm{u}}{\pi} \\ $$$$\underset{\mathrm{u}\rightarrow\mathrm{0}}…