Menu Close

Author: Tinku Tara

The-first-term-of-an-A-P-is-log-a-and-second-term-is-log-b-show-that-the-sum-of-first-n-terms-in-1-2-log-b-n-n-1-a-n-3-

Question Number 18022 by ibraheem160 last updated on 13/Jul/17 $${The}\:{first}\:{term}\:{of}\:{an}\:{A}.{P}\:\:{is}\:{log}^{{a}} \:{and}\:{second}\:{term}\:{is}\: \\ $$$${log}^{{b}} .{show}\:{that}\:{the}\:{sum}\:{of}\:{first}\:{n}\:{terms}\:{in}\: \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}{log}\left[\frac{{b}^{{n}\left({n}−\mathrm{1}\right)} }{{a}^{{n}\left(−\mathrm{3}\right)} }\right] \\ $$ Answered by prakash jain last…

find-the-value-of-b-wich-makes-the-line-y-b-divide-the-tow-funtions-into-tow-equal-parts-1-f-x-9-x-2-g-x-0-2-f-x-9-x-g-x-0-

Question Number 83556 by M±th+et£s last updated on 03/Mar/20 $${find}\:{the}\:{value}\:{of}\:\:\left({b}\right)\:{wich}\:{makes}\:{the} \\ $$$${line}\:{y}={b}\:{divide}\:{the}\:{tow}\:{funtions}\:{into} \\ $$$${tow}\:{equal}\:{parts} \\ $$$$ \\ $$$$\left.\mathrm{1}\right)\:{f}\left({x}\right)=\mathrm{9}−{x}^{\mathrm{2}} \:,\:{g}\left({x}\right)=\mathrm{0} \\ $$$$ \\ $$$$\left.\mathrm{2}\right){f}\left({x}\right)=\mathrm{9}−\mid{x}\mid\:,\:{g}\left({x}\right)=\mathrm{0} \\ $$…

Question-83554

Question Number 83554 by Power last updated on 03/Mar/20 Answered by MJS last updated on 03/Mar/20 $${x}^{\mathrm{4}} +\mathrm{4}{x}^{\mathrm{3}} −\mathrm{8}{x}+\frac{\mathrm{17}}{\mathrm{5}}=\mathrm{0} \\ $$$$\mathrm{let}\:{x}={t}−\mathrm{1} \\ $$$${t}^{\mathrm{4}} −\mathrm{6}{t}^{\mathrm{2}} +\frac{\mathrm{42}}{\mathrm{5}}=\mathrm{0}…

Question-149081

Question Number 149081 by Integrals last updated on 02/Aug/21 Answered by Ar Brandon last updated on 02/Aug/21 $$\phi=\int\frac{{d}\beta}{\mathrm{2}−\mathrm{3sin}\beta}\:,\:{t}=\mathrm{tan}\frac{\beta}{\mathrm{2}} \\ $$$$\:\:\:=\int\frac{\mathrm{2}}{\mathrm{2}−\mathrm{3}\left(\frac{\mathrm{2}{t}}{\mathrm{1}+{t}^{\mathrm{2}} }\right)}\centerdot\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }=\int\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{3}{t}+\mathrm{1}} \\ $$$$\:\:\:=\int\frac{{dt}}{\left({t}−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{2}}…

Question-83542

Question Number 83542 by Power last updated on 03/Mar/20 Answered by john santu last updated on 03/Mar/20 $$\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{\mathrm{2x}−\mathrm{1}} } \\ $$$$\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{2001}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{2001}}−\mathrm{1}} } \\ $$$$\mathrm{f}\left(\frac{\mathrm{2}}{\mathrm{2001}}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}+\mathrm{2}^{\frac{\mathrm{2}}{\mathrm{2001}}−\mathrm{1}} }…

Question-83543

Question Number 83543 by Power last updated on 03/Mar/20 Commented by john santu last updated on 03/Mar/20 $$\mathrm{let}\:\mathrm{1}+\mathrm{2x}+\mathrm{3x}^{\mathrm{2}} +\mathrm{4x}^{\mathrm{3}} +\mathrm{5x}^{\mathrm{4}} +…\:=\:\mathrm{f}\left(\mathrm{x}\right) \\ $$$$\int\:\mathrm{f}\left(\mathrm{x}\right)\mathrm{dx}=\:\int\left(\mathrm{1}+\mathrm{2x}+\mathrm{3x}^{\mathrm{2}} +\mathrm{4x}^{\mathrm{3}} +…\right)\mathrm{dx}…