Question Number 83495 by john santu last updated on 03/Mar/20 $$\mathrm{closest}\:\mathrm{distance}\:\mathrm{point}\:\left(\mathrm{3},\mathrm{0}\right)\:\mathrm{to}\:\mathrm{curve}\: \\ $$$$\mathrm{y}^{\mathrm{2}} \:=\:\mathrm{x}+\mathrm{4}\:? \\ $$ Commented by john santu last updated on 03/Mar/20 $$\mathrm{d}\:=\:\sqrt{\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{2}}…
Question Number 149031 by puissant last updated on 02/Aug/21 Answered by EDWIN88 last updated on 02/Aug/21 $$\Rightarrow\frac{\mathrm{1}+\mathrm{cos}\:\mathrm{2}{x}+\mathrm{1}+\mathrm{cos}\:\mathrm{4}{x}+\mathrm{1}+\mathrm{cos}\:\mathrm{6}{x}}{\mathrm{2}}=\mathrm{1} \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{6}{x}+\mathrm{cos}\:\mathrm{4}{x}+\mathrm{cos}\:\mathrm{2}{x}=−\mathrm{1} \\ $$$$\Rightarrow\mathrm{2cos}\:\mathrm{4}{x}\:\mathrm{cos}\:\mathrm{2}{x}+\mathrm{cos}\:\mathrm{4}{x}=−\mathrm{1} \\ $$$$\Rightarrow\mathrm{cos}\:\mathrm{4}{x}\left(\mathrm{2cos}\:\mathrm{2}{x}+\mathrm{1}\right)=−\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{2cos}\:^{\mathrm{2}}…
Question Number 83492 by jagoll last updated on 03/Mar/20 $$\mathrm{f}\left(\mathrm{x}\right)=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{x}}} \\ $$$$\underset{\mathrm{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{f}\left(\mathrm{2x}−\mathrm{t}\right)+\mathrm{f}\left(\mathrm{2x}−\mathrm{2t}\right)−\mathrm{2f}\left(\mathrm{2x}+\mathrm{t}\right)}{\mathrm{t}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 17957 by Arnab Maiti last updated on 13/Jul/17 $$\mathrm{prove}\:\mathrm{that}\:\left(\mathrm{1}+\frac{\mathrm{a}}{\mathrm{x}}\right)^{\mathrm{n}} =\left(\mathrm{1}+\frac{\mathrm{an}}{\mathrm{x}}\right)\:,\:\:\mathrm{x}\gg\mathrm{a} \\ $$ Answered by 42 last updated on 13/Jul/17 $$\mathrm{Expand}\:\mathrm{using}\:\mathrm{binomial}\:\mathrm{theorem}: \\ $$$$\mathrm{1}\:+\:{n}\left(\frac{{a}}{{x}}\right)\:+\:\frac{{n}\left({n}\:−\:\mathrm{1}\right)}{\mathrm{2}}\left(\frac{{a}}{{x}}\right)^{\mathrm{2}} \:+\:……
Question Number 149030 by jlewis last updated on 02/Aug/21 $$\mathrm{f}\left(\mathrm{x}\right)=\underset{\underset{\mathrm{5}^{\mathrm{x}} +\mathrm{1}} {−}} {\mathrm{4}}\:\:\:\:\mathrm{x}=\mathrm{0},\mathrm{1},\mathrm{2}…..\:\:\:\mathrm{find}\:\mathrm{the}\:\mathrm{moment}\: \\ $$$$\mathrm{generating}\:\mathrm{function} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 83493 by jagoll last updated on 03/Mar/20 $$\mathrm{If}\:\underset{{x}\rightarrow\mathrm{p}} {\mathrm{lim}}\:\frac{\mid\mathrm{x}+\mathrm{p}\mid^{\mathrm{2}} −\mid\mathrm{2p}\mid^{\mathrm{2}} }{\mathrm{p}^{\mathrm{2}} −\mathrm{x}^{\mathrm{2}} }\:=\:\mathrm{L} \\ $$$$\mathrm{find}\:\underset{{x}\rightarrow\mathrm{p}} {\mathrm{lim}}\:\frac{\mid\mathrm{2p}\mid^{\mathrm{3}} −\mid\mathrm{x}+\mathrm{p}\mid^{\mathrm{3}} }{\mathrm{x}−\mathrm{p}} \\ $$ Terms of Service…
Question Number 149025 by mathdanisur last updated on 02/Aug/21 $${Solve}\:{for}\:{equation}: \\ $$$${cos}^{\mathrm{3}} \left({x}\right)\:-\:{sin}^{\mathrm{3}} \left({x}\right)\:+\:\mathrm{1} \\ $$ Commented by ArielVyny last updated on 02/Aug/21 $${equal}\:{what}??\:{the}\:{syntaxe}\:{is}\:{not}\:{correct}\:{sir} \\…
Question Number 149024 by mathdanisur last updated on 02/Aug/21 Answered by Olaf_Thorendsen last updated on 02/Aug/21 $${f}_{{n}} \left({x}\right)\:=\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{x}^{{k}} \:=\:{x}\frac{\mathrm{1}−{x}^{{n}} }{\mathrm{1}−{x}}\:=\:\frac{{x}−{x}^{{n}+\mathrm{1}} }{\mathrm{1}−{x}} \\ $$$${x}.{f}'\left({x}\right)\:=\:{x}\underset{{k}=\mathrm{1}}…
Question Number 83491 by john santu last updated on 03/Mar/20 $$\mathrm{f}\left(\mathrm{x}\right)\:=\:\frac{\sqrt{\mathrm{1}+\mathrm{sin}\:\left(\mathrm{2x}\right)}−\sqrt{\mathrm{1}−\mathrm{2sin}\:\left(\mathrm{x}\right)}}{\mathrm{x}} \\ $$$$\mathrm{g}\left(\mathrm{x}\right)\:=\:\mathrm{2x}+\sqrt{\mathrm{2x}} \\ $$$$\mathrm{find}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\mathrm{g}\left(\mathrm{f}\left(\mathrm{x}\right)\right)\: \\ $$ Commented by john santu last updated on…
Question Number 83488 by jagoll last updated on 03/Mar/20 $$\int\:\frac{\mathrm{x}^{\mathrm{3}} −\mathrm{1}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}}}\:\mathrm{dx}\:=\:? \\ $$ Answered by john santu last updated on 03/Mar/20 Terms of Service…