Menu Close

Author: Tinku Tara

Question-17895

Question Number 17895 by ajfour last updated on 12/Jul/17 Commented by ajfour last updated on 12/Jul/17 $$\mathrm{solution}\:\mathrm{to}\:\mathrm{Q}.\mathrm{17872}\: \\ $$$$\mathrm{which}\:\mathrm{said}:\:\:\mathrm{Solve} \\ $$$$\:\mid\mathrm{x}−\mathrm{1}\mid+\mid\mathrm{x}\mid+\mid\mathrm{x}+\mathrm{1}\mid=\mathrm{x}+\mathrm{2} \\ $$ Commented by…

find-the-resideo-f-z-z-z-n-1-

Question Number 148960 by tabata last updated on 01/Aug/21 $${find}\:{the}\:{resideo}\:{f}\left({z}\right)=\frac{{z}}{{z}^{{n}} −\mathrm{1}} \\ $$ Answered by mathmax by abdo last updated on 02/Aug/21 $$\mathrm{les}\:\mathrm{residus}\:\mathrm{ici}\:\mathrm{sont}\:\mathrm{les}\:\mathrm{poles}\:\mathrm{de}\:\mathrm{f}\:\:\mathrm{et}\:\mathrm{se}\:\mathrm{sent}\:\mathrm{les}\:\mathrm{racines}\:\mathrm{n}^{\mathrm{eme}} \:\mathrm{de}\:\mathrm{lunite} \\…

tan-3a-tan-a-k-show-that-sin-3a-sin-a-2k-k-1-

Question Number 83425 by jagoll last updated on 02/Mar/20 $$\frac{\mathrm{tan}\:\mathrm{3a}}{\mathrm{tan}\:\mathrm{a}}\:=\:\mathrm{k} \\ $$$$\mathrm{show}\:\mathrm{that}\:\frac{\mathrm{sin}\:\mathrm{3a}}{\mathrm{sin}\:\mathrm{a}}\:=\:\frac{\mathrm{2k}}{\mathrm{k}−\mathrm{1}} \\ $$ Commented by jagoll last updated on 02/Mar/20 $$\mathrm{tan}\:\mathrm{3a}\:=\:\mathrm{k}\:\mathrm{tan}\:\mathrm{a} \\ $$$$\frac{\mathrm{3tan}\:\mathrm{a}−\mathrm{tan}\:^{\mathrm{3}} \mathrm{a}}{\mathrm{1}−\mathrm{3tan}\:^{\mathrm{2}}…

Question-17886

Question Number 17886 by b.e.h.i.8.3.417@gmail.com last updated on 11/Jul/17 Commented by b.e.h.i.8.3.417@gmail.com last updated on 12/Jul/17 $$\left.\mathrm{1}\right){circle}\:{radius}={R} \\ $$$$\left.\mathrm{2}\right){acute}\:{angle}\:{between}\:{chords}:{AB}\:,\:{CD}=\varphi \\ $$$${find}:\:{AP}^{\mathrm{2}} +{BP}^{\mathrm{2}} +{CP}^{\mathrm{2}} +{DP}^{\mathrm{2}} .…

find-range-x-of-function-x-4-y-2-x-y-

Question Number 83420 by jagoll last updated on 02/Mar/20 $$\mathrm{find}\:\mathrm{range}\:\mathrm{x}\:\mathrm{of}\:\mathrm{function}\: \\ $$$$\mathrm{x}−\mathrm{4}\sqrt{\mathrm{y}}\:=\:\mathrm{2}\sqrt{\mathrm{x}−\mathrm{y}} \\ $$ Commented by mathmax by abdo last updated on 02/Mar/20 $${we}\:{have}\:\mathrm{0}\leqslant{y}\leqslant{x}\:\:\:\left({e}\right)\Rightarrow\left({x}−\mathrm{4}\sqrt{{y}}\right)^{\mathrm{2}} =\mathrm{4}\left({x}−{y}\right)\:\Rightarrow…