Question Number 17884 by b.e.h.i.8.3.417@gmail.com last updated on 11/Jul/17 Commented by b.e.h.i.8.3.417@gmail.com last updated on 11/Jul/17 $${diagonals}\:{of}\:{trapezoid}:\:{ABCD},{create} \\ $$$$\mathrm{4}\:{triangles}.{area}\:{of}\:{two}\:{this}\:{triangles} \\ $$$${are}\:{equail}\:{to}:\:{a}^{\mathrm{2}} \:,{and}\:,\:{b}^{\mathrm{2}} . \\ $$$${find}\:{area}\:{of}\:{trapezoid}\:{in}\:{terms}\:{of}:\:{a},{b}.…
Question Number 148953 by mathdanisur last updated on 01/Aug/21 Commented by mathdanisur last updated on 01/Aug/21 $${Dear}\:{Ser},\:{there}\:{a}\:{mistake}\:{in}\:{the} \\ $$$${solution},\:{sorry} \\ $$ Commented by dumitrel last…
Question Number 17879 by tawa tawa last updated on 11/Jul/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 17878 by tawa tawa last updated on 11/Jul/17 Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 148951 by EDWIN88 last updated on 01/Aug/21 $${Let}\:{complex}\:{number}\:{z}=\left({a}+\mathrm{cos}\:\theta\right)+\left(\mathrm{2}{a}−\mathrm{sin}\:\theta\right){i}\:. \\ $$$${If}\:\mid{z}\mid\:\leqslant\mathrm{2}\:{for}\:{any}\:\theta\in{R}\:{then}\:{the} \\ $$$${range}\:{of}\:{real}\:{number}\:{a}\:{is}\:\_\_\_ \\ $$ Answered by iloveisrael last updated on 01/Aug/21 Answered by…
Question Number 83413 by jagoll last updated on 02/Mar/20 $$\mathrm{y}\:=\:\mathrm{x}\:\mid\mathrm{x}\mid \\ $$$$\mathrm{find}\:\mathrm{y}\:'\:? \\ $$ Commented by mr W last updated on 02/Mar/20 $$\mid{x}\mid={sign}\left({x}\right){x} \\ $$$${y}={sign}\left({x}\right){x}^{\mathrm{2}}…
Question Number 148944 by tabata last updated on 01/Aug/21 $${find}\:{residuo}\:{f}\left({z}\right)=\frac{{z}}{{z}^{{n}} −\mathrm{1}} \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 83411 by ajfour last updated on 02/Mar/20 Commented by ajfour last updated on 02/Mar/20 $${Given}\:{a}\:{regular}\:{triangular} \\ $$$${pyramid}\:{with}\:{base}\:{sides}\:\boldsymbol{{a}}\:{and} \\ $$$${lateral}\:{edges}\:\boldsymbol{{a}}\sqrt{\mathrm{2}}.\:{A}\:{sphere} \\ $$$${passes}\:{through}\:{A}\:{and}\:{is}\:{tangent} \\ $$$${to}\:{the}\:{lateral}\:{edges}\:{SB}\:{and}\:{SC}…
Question Number 148947 by mathdanisur last updated on 01/Aug/21 $$\mathrm{615}\:+\:{x}^{\mathrm{2}} \:=\:\mathrm{2}^{\boldsymbol{{y}}} \:\:\:;\:\:\:{x};{y}\in\mathbb{N} \\ $$$$\Rightarrow\:{x};{y}\:=\:? \\ $$ Answered by dumitrel last updated on 02/Aug/21 $${if}\:{y}=\mathrm{2}{k}+\mathrm{1}\Rightarrow{u}\left(\mathrm{2}^{{y}} \right)\in\left\{\mathrm{2},\mathrm{8}\right\}\Rightarrow…
Question Number 148946 by Tawa11 last updated on 01/Aug/21 $$\mathrm{Sum}\:\mathrm{to}\:\:\mathrm{n}\:\:\mathrm{term}:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{1}.\mathrm{2}.\mathrm{3}}\:\:\:+\:\:\frac{\mathrm{1}}{\mathrm{4}.\mathrm{5}.\mathrm{6}}\:\:\:+\:\:\:\frac{\mathrm{1}}{\mathrm{7}.\mathrm{8}.\mathrm{9}}\:\:+\:\:…\:\:\:\mathrm{to}\:\:\mathrm{n}. \\ $$ Answered by Olaf_Thorendsen last updated on 02/Aug/21 $$\mathrm{S}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)\left(\mathrm{3}{n}+\mathrm{2}\right)\left(\mathrm{3}{n}+\mathrm{3}\right)} \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{0}} {\overset{\infty}…