Question Number 148884 by 0731619 last updated on 01/Aug/21 Answered by aleks041103 last updated on 03/Aug/21 $$\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{{a}+{x}^{\mathrm{13}} }=\frac{\mathrm{1}}{{a}}\int_{\mathrm{0}} ^{\infty} \frac{{dx}}{\mathrm{1}+\left(\frac{{x}}{{a}^{\mathrm{1}/\mathrm{13}} }\right)^{\mathrm{13}} }= \\…
Question Number 148887 by mathdanisur last updated on 01/Aug/21 $$\Omega=\underset{\:\mathrm{1}} {\overset{\:\infty} {\int}}\:\frac{\sqrt{{x}}\:{ln}\:{x}}{{x}^{\mathrm{2}} \:+\:\mathrm{1}}\:{dx}\:=\:? \\ $$ Answered by Kamel last updated on 01/Aug/21 $$\Omega=\underset{\:\mathrm{1}} {\overset{\:\infty} {\int}}\:\frac{\sqrt{{x}}\:{ln}\:{x}}{{x}^{\mathrm{2}}…
Question Number 148886 by DELETED last updated on 01/Aug/21 Answered by Rasheed.Sindhi last updated on 01/Aug/21 $$\frac{{AC}}{\mathrm{sin}\:{B}}=\frac{{BC}}{\mathrm{sin}\:{A}} \\ $$$$\frac{\mathrm{8}}{\mathrm{sin}\:\mathrm{60}}=\frac{\mathrm{6}}{\mathrm{sin}\:\theta} \\ $$$$\frac{\mathrm{8}}{\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}=\frac{\mathrm{6}}{\mathrm{sin}\:\theta} \\ $$$$\frac{\mathrm{6}}{\mathrm{sin}\:\theta}=\frac{\mathrm{16}}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{sin}\:\theta=\frac{\sqrt{\mathrm{3}}}{\mathrm{16}}×\mathrm{6}=\frac{\mathrm{3}\sqrt{\mathrm{3}}}{\mathrm{8}}…
Question Number 148881 by DELETED last updated on 01/Aug/21 Answered by Rasheed.Sindhi last updated on 01/Aug/21 $$\blacktriangle{ABC}=\sqrt{\mathrm{s}\left(\mathrm{s}−\mathrm{a}\right)\left(\mathrm{s}−\mathrm{b}\right)\left(\mathrm{s}−\mathrm{c}\right)} \\ $$$$\:\:\:\:\:\:\mathrm{s}=\frac{\mathrm{a}+\mathrm{b}+\mathrm{c}}{\mathrm{2}}=\frac{\mathrm{7}+\mathrm{6}+\mathrm{8}}{\mathrm{2}}=\mathrm{10}.\mathrm{5} \\ $$$$\blacktriangle{ABC}=\sqrt{\mathrm{10}.\mathrm{5}\left(\mathrm{10}.\mathrm{5}−\mathrm{6}\right)\left(\mathrm{10}.\mathrm{5}−\mathrm{8}\right)\left(\mathrm{10}.\mathrm{5}−\mathrm{7}\right)} \\ $$$$\:\:\:\:\:\:\:=\sqrt{\mathrm{10}.\mathrm{5}×\mathrm{4}.\mathrm{5}×\mathrm{2}.\mathrm{5}×\mathrm{3}.\mathrm{5}}\approx\mathrm{20}.\mathrm{33}\:\mathrm{cm}^{\mathrm{2}} \\ $$…
Question Number 148880 by DELETED last updated on 01/Aug/21 Answered by DELETED last updated on 01/Aug/21 $$\mid\mathrm{AC}\mid=\sqrt{\mathrm{10}^{\mathrm{2}} +\mathrm{10}^{\mathrm{2}} }=\mathrm{10}\sqrt{\mathrm{2}}\:\mathrm{cm} \\ $$$$\mid\mathrm{CG}\mid=\mathrm{10}\:\mathrm{cm} \\ $$$$\rightarrow\mathrm{Luas}\:\Delta\mathrm{ACG}: \\ $$$$\:\:\:\:=\:\:\frac{\mathrm{10}×\mathrm{10}\sqrt{\mathrm{2}}\:}{\mathrm{2}}=\mathrm{50}\sqrt{\mathrm{2}}\:\mathrm{cm}^{\mathrm{2}}…
Question Number 83342 by M±th+et£s last updated on 01/Mar/20 $$\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\:{z}} \int_{{y}} ^{\mathrm{1}} \frac{{z}^{{n}+\mathrm{1}} {Li}_{\mathrm{1}} \left({y}\right)}{\left({zx}\right)^{\mathrm{2}} }{dx}\:{dy}\:{dz}\:,\:\forall\:{n}\in{z} \\ $$ Answered by mind is…
Question Number 83340 by mhmd last updated on 01/Mar/20 $${by}\:{using}\:{the}\:{lagrange}\:{method}\:{solve}\:{the}\:{partial}\:{equatio}\:\left({p}−{q}=\frac{{z}}{{x}+{y}}\right) \\ $$ Terms of Service Privacy Policy Contact: info@tinkutara.com
Question Number 17805 by ibraheem160 last updated on 10/Jul/17 $${If}\:\theta={t}^{{n}} {e}^{−{r}^{\frac{\mathrm{2}}{{ut}}} } ,{find}\:{the}\:{value}\:{of} \\ $$$${n}\:{which}\:{will}\:{make}\:\frac{\mathrm{1}}{{r}^{\mathrm{2}} }\:\frac{\partial}{\partial{r}}\left({r}^{\mathrm{2}} \frac{\partial\theta}{\left.\partial{r}\right)}\right. \\ $$$${equal}\:{to}\:\frac{\partial\theta}{\partial{t}} \\ $$ Terms of Service Privacy…
Question Number 83341 by mr W last updated on 01/Mar/20 $${Find}\:{the}\:{maximum}\:{and}\:{minimum} \\ $$$${of}\:{the}\:{expression}\:\underset{\boldsymbol{{i}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\boldsymbol{\sum}}{a}}_{\boldsymbol{{i}}} \boldsymbol{{x}}_{\boldsymbol{{i}}} \:{with} \\ $$$$\underset{\boldsymbol{{i}}=\mathrm{1}} {\overset{\boldsymbol{{n}}} {\boldsymbol{\sum}}}\left(\boldsymbol{{x}}_{\boldsymbol{{i}}} −\boldsymbol{{b}}_{\boldsymbol{{i}}} \right)^{\mathrm{2}} =\boldsymbol{{c}}^{\mathrm{2}} ,\:{where}\:\boldsymbol{{a}}_{\boldsymbol{{i}}}…
Question Number 83338 by jagoll last updated on 01/Mar/20 $$\int\:\mathrm{sin}\:\left(\mathrm{3x}\right)\:\mathrm{tan}\:\left(\mathrm{2x}\right)\:\mathrm{dx}\:? \\ $$ Answered by jagoll last updated on 01/Mar/20 Terms of Service Privacy Policy Contact:…