Menu Close

Author: Tinku Tara

solve-log-24sinx-24cosx-3-2-

Question Number 83289 by Cmr 237 last updated on 29/Feb/20 $$\:\:{solve} \\ $$$$\boldsymbol{{log}}_{\left(\mathrm{24}\boldsymbol{{sinx}}\right)} \left(\mathrm{24}\boldsymbol{{cosx}}\right)=\frac{\mathrm{3}}{\mathrm{2}} \\ $$ Answered by TANMAY PANACEA last updated on 29/Feb/20 $$\frac{{ln}\mathrm{24}{cosx}}{{ln}\mathrm{24}{sinx}}=\frac{\mathrm{3}}{\mathrm{2}}…

S-4-3-m-m-m-a-m-m-b-m-m-c-m-m-a-m-b-m-c-2-m-a-m-b-m-c-mediani-prove-

Question Number 148821 by vvvv last updated on 31/Jul/21 $$\boldsymbol{{S}}=\frac{\mathrm{4}}{\mathrm{3}}\sqrt{\boldsymbol{{m}}\left(\boldsymbol{{m}}−\boldsymbol{{m}}_{\boldsymbol{{a}}} \right)\left(\boldsymbol{{m}}−\boldsymbol{{m}}_{\boldsymbol{{b}}} \right)\left(\boldsymbol{{m}}−\boldsymbol{{m}}_{\boldsymbol{{c}}} \right)} \\ $$$$\boldsymbol{{m}}=\frac{\boldsymbol{{m}}_{\boldsymbol{{a}}} +\boldsymbol{{m}}_{\boldsymbol{{b}}} +\boldsymbol{{m}}_{\boldsymbol{{c}}} }{\mathrm{2}} \\ $$$$\boldsymbol{{m}}_{\boldsymbol{{a}}} ;\boldsymbol{{m}}_{\boldsymbol{{b}}} ;\boldsymbol{{m}}_{\boldsymbol{{c}}} −\boldsymbol{{mediani}} \\ $$$$\boldsymbol{{prove}}…

Question-83287

Question Number 83287 by Power last updated on 29/Feb/20 Answered by mr W last updated on 29/Feb/20 $$\mathrm{sin}\:{x}={x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}−….. \\ $$$$\frac{\mathrm{sin}\:{x}}{{x}}=\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{3}!}+\frac{{x}^{\mathrm{4}} }{\mathrm{5}!}−….. \\…

3-x-2-x-4-7-x-2-find-solution-

Question Number 83285 by jagoll last updated on 29/Feb/20 $$\mathrm{3}^{\left(\mathrm{x}+\mathrm{2}\right)\left(\mathrm{x}−\mathrm{4}\right)} \:\leqslant\:\mathrm{7}^{\mathrm{x}+\mathrm{2}} \\ $$$$\mathrm{find}\:\mathrm{solution} \\ $$ Commented by jagoll last updated on 29/Feb/20 $$\mathrm{7}^{\mathrm{log}_{\mathrm{7}} \:\left(\mathrm{3}^{\left(\mathrm{x}+\mathrm{2}\right)\left(\mathrm{x}−\mathrm{4}\right)} \right)\:}…

Question-148819

Question Number 148819 by mathlove last updated on 31/Jul/21 Answered by liberty last updated on 31/Jul/21 $$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}}{\left(\mathrm{1}+\frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{n}}\right)−\left(\mathrm{1}+\frac{\mathrm{x}}{\mathrm{n}}\right)}\:= \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{x}}{\frac{\mathrm{x}}{\mathrm{n}}\left(\mathrm{x}−\mathrm{1}\right)}\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{n}}{\mathrm{x}−\mathrm{1}}=−\:\mathrm{n} \\ $$…

Question-17743

Question Number 17743 by b.e.h.i.8.3.417@gmail.com last updated on 10/Jul/17 Answered by mrW1 last updated on 10/Jul/17 $$\mathrm{let}\:\mathrm{k}=\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}\:\mathrm{l} \\ $$$$\mathrm{A}\left(\mathrm{0},\mathrm{k},\mathrm{0}\right) \\ $$$$\mathrm{B}\left(\mathrm{k},\mathrm{0},\mathrm{0}\right) \\ $$$$\mathrm{C}\left(\mathrm{0},−\mathrm{k},\mathrm{0}\right) \\ $$$$\mathrm{D}\left(−\mathrm{k},\mathrm{0},\mathrm{0}\right)…