Menu Close

Author: Tinku Tara

bounded-by-the-curve-y-4-x-y-0-y-1-

Question Number 83110 by 09658867628 last updated on 28/Feb/20 $${bounded}\:{by}\:{the}\:{curve}\:{y}=\sqrt{\mathrm{4}-{x}}\:{y}=\mathrm{0}\:{y}=\mathrm{1} \\ $$ Commented by jagoll last updated on 28/Feb/20 $$\mathrm{Area}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{4}−\mathrm{y}^{\mathrm{2}} \right)\:\mathrm{dy}\: \\ $$$$=\:\mathrm{4y}\:−\:\frac{\mathrm{y}^{\mathrm{3}}…

prove-that-0-pi-4-cos-nx-cos-n-x-dx-2-n-pi-8-k-1-n-1-sin-kpi-4-2k-2-k-n-N-

Question Number 83108 by M±th+et£s last updated on 28/Feb/20 $${prove}\:{that} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{4}}} \frac{{cos}\left({nx}\right)}{{cos}^{{n}} \left({x}\right)}\:{dx}\:=\mathrm{2}^{{n}} \left[\frac{\pi}{\mathrm{8}}−\underset{{k}=\mathrm{1}} {\overset{{n}−\mathrm{1}} {\sum}}\frac{{sin}\left(\frac{{k}\pi}{\mathrm{4}}\right)}{\mathrm{2}{k}\left(\sqrt{\mathrm{2}}\right)^{{k}} }\right]\:{n}\in{N}^{\ast} \\ $$ Answered by mind is…

1-e-e-dt-t-

Question Number 83109 by 09658867628 last updated on 28/Feb/20 $$\int_{\mathrm{1}/\boldsymbol{{e}}} ^{{e}} \frac{\boldsymbol{{dt}}}{\boldsymbol{{t}}} \\ $$ Commented by jagoll last updated on 28/Feb/20 $$=\:\mathrm{ln}\:\left(\mathrm{t}\right)\:\mid_{\frac{\mathrm{1}}{\mathrm{e}}} ^{\mathrm{e}} \:=\:\mathrm{1}−\left(−\mathrm{1}\right)\:=\:\mathrm{2} \\…

Question-83102

Question Number 83102 by ajfour last updated on 28/Feb/20 Commented by ajfour last updated on 28/Feb/20 $$\mathrm{Find}\:\mathrm{side}\:\boldsymbol{\mathrm{s}}\:\mathrm{of}\:\mathrm{largest}\:\mathrm{equilateral} \\ $$$$\bigtriangleup\mathrm{ABC}\:\mathrm{whose}\:\mathrm{vertices}\:\mathrm{lie}\:\mathrm{on} \\ $$$$\mathrm{three}\:\mathrm{circles}\:\mathrm{of}\:\mathrm{radii}\:\mathrm{p},\mathrm{q},\mathrm{r}\:\mathrm{touching} \\ $$$$\mathrm{each}\:\mathrm{other}\:\mathrm{externally}. \\ $$…

find-singular-point-of-this-following-and-whats-the-type-of-singular-point-1-f-z-1-lnz-2-f-z-1-cos-z-i-z-z-2-1-2-3-f-z-sinz-z-2-z-4-f-z-sin2z-z-2-

Question Number 148639 by tabata last updated on 29/Jul/21 $${find}\:{singular}\:{point}\:{of}\:{this}\:{following}\:{and} \\ $$$${whats}\:{the}\:{type}\:{of}\:{singular}\:{point}\:? \\ $$$$ \\ $$$$\left(\mathrm{1}\right){f}\left({z}\right)=\frac{\mathrm{1}}{{lnz}} \\ $$$$ \\ $$$$\left(\mathrm{2}\right){f}\left({z}\right)=\frac{\mathrm{1}−{cos}\left({z}+{i}\right)}{{z}\left({z}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$ \\…