Menu Close

Author: Tinku Tara

show-that-a-n-1-1-1-2-1-3-1-4-1-n-1-n-is-a-cauchy-sequence-my-attempt-let-gt-0-we-have-a-m-a-n-1-n-2-n-1-1-n-3-n-2-

Question Number 148635 by learner001 last updated on 29/Jul/21 $$\mathrm{show}\:\mathrm{that}\:\left\{\mathrm{a}_{\mathrm{n}} \right\}:=\frac{\mathrm{1}}{\mathrm{1}!}−\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}−\frac{\mathrm{1}}{\mathrm{4}!}…+\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}!}\:\mathrm{is}\:\mathrm{a}\:\mathrm{cauchy} \\ $$$$\mathrm{sequence}. \\ $$$$\mathrm{my}\:\mathrm{attempt}: \\ $$$$\mathrm{let}\:\epsilon>\mathrm{0}\:\mathrm{we}\:\mathrm{have}\:\mid\mathrm{a}_{\mathrm{m}} −\mathrm{a}_{\mathrm{n}} \mid=\mid\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{2}} }{\left(\mathrm{n}+\mathrm{1}\right)!}+\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{3}} }{\left(\mathrm{n}+\mathrm{2}\right)!}+…+\frac{\left(−\mathrm{1}\right)^{\mathrm{m}+\mathrm{1}} }{\mathrm{m}!}\mid \\ $$$$\leqslant\mid\frac{\left(−\mathrm{1}\right)^{\mathrm{n}+\mathrm{2}}…

Question-148630

Question Number 148630 by mathdanisur last updated on 29/Jul/21 Answered by mr W last updated on 30/Jul/21 $$\angle{C}=\mathrm{60}−\mathrm{20}=\mathrm{40}° \\ $$$$\angle{A}=\mathrm{180}−\mathrm{20}−\mathrm{60}=\mathrm{100}° \\ $$$${say}\:{AB}={a} \\ $$$$\frac{{AF}}{\mathrm{sin}\:\mathrm{20}}=\frac{{BF}}{\mathrm{sin}\:\mathrm{100}}=\frac{{AB}}{\mathrm{sin}\:\mathrm{60}}=\frac{\mathrm{2}{a}}{\:\sqrt{\mathrm{3}}} \\…

consider-the-following-pdf-of-a-random-variable-X-f-x-i-0-x-2-i-i-0-otherwise-x-gt-0-find-the-variance-X-

Question Number 148620 by jlewis last updated on 29/Jul/21 $$\mathrm{consider}\:\mathrm{the}\:\mathrm{following}\:\mathrm{pdf}\:\mathrm{of} \\ $$$$\mathrm{a}\:\mathrm{random}\:\mathrm{variable}\:\mathrm{X} \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\left\{\sum_{\mathrm{i}=\mathrm{0}} ^{\infty} \left[\left(−\mathrm{x}^{\mathrm{2}} \right)\mathrm{i}/\mathrm{i}!\right]_{\mathrm{0}\:\mathrm{otherwise}} ^{\mathrm{x}>\mathrm{0}} \:\right. \\ $$$$\mathrm{find}\:\mathrm{the}\:\mathrm{variance}\:\mathrm{X} \\ $$$$ \\ $$…