Menu Close

Author: Tinku Tara

prove-that-a-n-n-1-defined-by-a-n-1-2-1-6-1-n-n-1-is-cauchy-sequence-

Question Number 148609 by learner001 last updated on 29/Jul/21 $$\mathrm{prove}\:\mathrm{that}\:\left(\mathrm{a}_{\mathrm{n}} \right)_{\mathrm{n}\geqslant\mathrm{1}\:} \mathrm{defined}\:\mathrm{by}\:\mathrm{a}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{6}}+…+\frac{\mathrm{1}}{\mathrm{n}\left(\mathrm{n}+\mathrm{1}\right)}\:\mathrm{is}\: \\ $$$$\mathrm{cauchy}\:\mathrm{sequence}. \\ $$ Commented by learner001 last updated on 29/Jul/21 $$\mathrm{This}\:\mathrm{is}\:\mathrm{what}\:\mathrm{i}\:\mathrm{tried}.…

lim-x-27x-3-3x-2-1-3-8x-3-x-2-1-3-x-3-4x-2-2021-1-3-

Question Number 148600 by EDWIN88 last updated on 29/Jul/21 $$\:\:\:\:\underset{{x}\rightarrow−\infty} {\mathrm{lim}}\sqrt[{\mathrm{3}}]{\mathrm{27}{x}^{\mathrm{3}} −\mathrm{3}{x}^{\mathrm{2}} }\:+\sqrt[{\mathrm{3}}]{\mathrm{8}{x}^{\mathrm{3}} −{x}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{{x}^{\mathrm{3}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{2021}}\:=?\: \\ $$ Answered by bemath last updated on…

Two-masses-5-kg-and-M-are-hanging-with-the-help-of-light-rope-and-pulley-as-shown-below-If-the-system-is-in-equilibrium-then-M-

Question Number 17530 by Tinkutara last updated on 07/Jul/17 $$\mathrm{Two}\:\mathrm{masses}\:\mathrm{5}\:\mathrm{kg}\:\mathrm{and}\:{M}\:\mathrm{are}\:\mathrm{hanging} \\ $$$$\mathrm{with}\:\mathrm{the}\:\mathrm{help}\:\mathrm{of}\:\mathrm{light}\:\mathrm{rope}\:\mathrm{and}\:\mathrm{pulley} \\ $$$$\mathrm{as}\:\mathrm{shown}\:\mathrm{below}.\:\mathrm{If}\:\mathrm{the}\:\mathrm{system}\:\mathrm{is}\:\mathrm{in} \\ $$$$\mathrm{equilibrium}\:\mathrm{then}\:{M}\:= \\ $$ Commented by Tinkutara last updated on 07/Jul/17…

f-Z-Z-f-x-2-f-x-1-f-5-4-find-f-30-

Question Number 148599 by mathdanisur last updated on 29/Jul/21 $${f}\::\:\mathbb{Z}\:\rightarrow\:\mathbb{Z} \\ $$$${f}\left({x}\right)\:=\:\mathrm{2}\:\centerdot\:{f}\left({x}\:-\:\mathrm{1}\right) \\ $$$${f}\left(\mathrm{5}\right)\:=\:\mathrm{4} \\ $$$${find}\:\:\:{f}\left(\mathrm{30}\right)\:=\:? \\ $$ Answered by Olaf_Thorendsen last updated on 29/Jul/21…

Evaluate-1-1-1-x-2-n-2-dx-for-n-Z-0-i-e-0-1-2-and-a-n-0-mod-2-b-n-1-mod-2-

Question Number 17525 by alex041103 last updated on 07/Jul/17 $$\mathrm{Evaluate}\:\underset{−\mathrm{1}} {\overset{\mathrm{1}} {\int}}\left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\frac{{n}}{\mathrm{2}}} {dx}\:\:\mathrm{for}\: \\ $$$${n}\:\in\:\mathbb{Z}\cap\left[\mathrm{0};\infty\right)\:\left(\mathrm{i}.\mathrm{e}.\:\mathrm{0},\:\mathrm{1},\:\mathrm{2},\:…\right)\:\mathrm{and}: \\ $$$$\left.\boldsymbol{\mathrm{a}}\right)\:\:{n}\:\equiv\:\mathrm{0}\left({mod}\:\mathrm{2}\right) \\ $$$$\left.\boldsymbol{{b}}\right)\:{n}\:\equiv\:\mathrm{1}\left({mod}\:\mathrm{2}\right) \\ $$ Commented by alex041103…

The-circle-touches-the-circle-internally-at-P-The-centre-O-of-is-outside-Let-XY-be-a-diameter-of-which-is-also-tangent-to-Assume-PY-gt-PX-Let-PY-intersect-at-Z-If-YZ-2PZ-what-i

Question Number 17524 by 786 last updated on 07/Jul/17 $$\mathrm{The}\:\mathrm{circle}\:\omega\:\mathrm{touches}\:\mathrm{the}\:\mathrm{circle}\:\Omega \\ $$$$\mathrm{internally}\:\mathrm{at}\:{P}.\:\mathrm{The}\:\mathrm{centre}\:{O}\:\mathrm{of}\:\Omega\:\mathrm{is} \\ $$$$\mathrm{outside}\:\omega.\:\mathrm{Let}\:{XY}\:\mathrm{be}\:\mathrm{a}\:\mathrm{diameter}\:\mathrm{of}\:\Omega \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{also}\:\mathrm{tangent}\:\mathrm{to}\:\omega.\:\mathrm{Assume} \\ $$$${PY}\:>\:{PX}.\:\mathrm{Let}\:{PY}\:\mathrm{intersect}\:\omega\:\mathrm{at}\:{Z}.\:\mathrm{If} \\ $$$${YZ}\:=\:\mathrm{2}{PZ},\:\mathrm{what}\:\mathrm{is}\:\mathrm{the}\:\mathrm{magnitude}\:\mathrm{of} \\ $$$$\angle{PYX}\:\mathrm{in}\:\mathrm{degrees}? \\ $$ Answered…