Menu Close

Author: Tinku Tara

dy-dx-y-sec-x-tan-x-

Question Number 83028 by jagoll last updated on 27/Feb/20 $$\frac{\mathrm{dy}}{\mathrm{dx}}\:+\:\mathrm{y}\:\mathrm{sec}\:\mathrm{x}\:=\:\mathrm{tan}\:\mathrm{x} \\ $$ Commented by john santu last updated on 27/Feb/20 $$\mathrm{IF}\:\Rightarrow\:\mathrm{e}^{\int\:\mathrm{sec}\:\mathrm{x}\:\mathrm{dx}} \:=\:\mathrm{e}\:^{\mathrm{ln}\:\left(\mathrm{sec}\:\mathrm{x}\:+\:\mathrm{tan}\:\mathrm{x}\:\right)\:} \\ $$$$\mathrm{IF}\:=\:\mathrm{sec}\:\mathrm{x}\:+\:\mathrm{tan}\:\mathrm{x}\: \\…

calculate-U-n-1-n-n-cos-x-2-y-2-x-2-y-2-dxdy-and-determine-lim-n-U-n-nature-of-U-n-

Question Number 148566 by mathmax by abdo last updated on 29/Jul/21 $$\mathrm{calculate}\:\:\mathrm{U}_{\mathrm{n}} =\int\int_{\left[\frac{\mathrm{1}}{\mathrm{n}},\mathrm{n}\left[\right.\right.} \:\:\:\frac{\mathrm{cos}\left(\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} \right)}{\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} }\mathrm{dxdy} \\ $$$$\mathrm{and}\:\mathrm{determine}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \mathrm{U}_{\mathrm{n}} \\ $$$$\mathrm{nature}\:\mathrm{of}\:\Sigma\:\mathrm{U}_{\mathrm{n}} ? \\…

The-number-of-values-of-x-lying-in-pi-pi-and-satisfying-2-sin-2-cos-2-and-sin-2-2-cos-2-cos-1-0-is-

Question Number 17492 by Tinkutara last updated on 06/Jul/17 $$\mathrm{The}\:\mathrm{number}\:\mathrm{of}\:\mathrm{values}\:\mathrm{of}\:{x}\:\mathrm{lying}\:\mathrm{in} \\ $$$$\left[−\pi,\:\pi\right]\:\mathrm{and}\:\mathrm{satisfying}\:\mathrm{2}\:\mathrm{sin}^{\mathrm{2}} \:\theta\:=\:\mathrm{cos}\:\mathrm{2}\theta \\ $$$$\mathrm{and}\:\mathrm{sin}\:\mathrm{2}\theta\:+\:\mathrm{2}\:\mathrm{cos}\:\mathrm{2}\theta\:−\:\mathrm{cos}\:\theta\:−\:\mathrm{1}\:=\:\mathrm{0}\:\mathrm{is} \\ $$ Answered by ajfour last updated on 08/Jul/17 $$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{2sin}\:^{\mathrm{2}}…

Question-148559

Question Number 148559 by Jonathanwaweh last updated on 29/Jul/21 Answered by Kamel last updated on 29/Jul/21 $${a}=\mathrm{3}{k}+{r},{b}=\mathrm{3}{k}'+{r}'\:\mathrm{0}\leqslant{r}<\mathrm{3},\:\mathrm{0}\leqslant{r}'<\mathrm{3}. \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} =\mathrm{3}{c}=\mathrm{9}\left({k}^{\mathrm{2}} +{k}'^{\mathrm{2}} \right)+\mathrm{6}\left({kr}+{k}'{r}'\right)+{r}^{\mathrm{2}} +{r}'^{\mathrm{2}} \\…

Trouver-toutes-les-fonctions-continues-f-R-R-verifiant-x-y-R-2-f-x-y-f-x-y-f-2-x-f-2-y-monsieur-j-ai-suppose-que-f-est-un-morphisme-mutiplicatif-de-R-mais-ca-ne-sort-pas-

Question Number 148558 by puissant last updated on 29/Jul/21 $$\mathrm{Trouver}\:\mathrm{toutes}\:\mathrm{les}\:\mathrm{fonctions}\:\mathrm{continues} \\ $$$$\mathrm{f}:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{verifiant}: \\ $$$$\forall\left(\mathrm{x},\mathrm{y}\right)\in\mathbb{R}^{\mathrm{2}} ,\:\mathrm{f}\left(\mathrm{x}+\mathrm{y}\right)\mathrm{f}\left(\mathrm{x}−\mathrm{y}\right)=\mathrm{f}^{\mathrm{2}} \left(\mathrm{x}\right)\mathrm{f}^{\mathrm{2}} \left(\mathrm{y}\right).. \\ $$$$\mathrm{monsieur}\:\mathrm{j}'\mathrm{ai}\:\mathrm{suppos}\acute {\mathrm{e}}\:\mathrm{que}\:\mathrm{f}\:\mathrm{est}\:\mathrm{un}\: \\ $$$$\mathrm{morphisme}\:\mathrm{mutiplicatif}\:\mathrm{de}\:\mathbb{R}..\:\mathrm{mais}\:\mathrm{ca}\:\mathrm{ne} \\ $$$$\mathrm{sort}\:\mathrm{pas}… \\…