Menu Close

Author: Tinku Tara

lim-x-0-x-4-2-sinx-

Question Number 148546 by mathdanisur last updated on 29/Jul/21 $$\underset{\boldsymbol{{x}}\rightarrow\mathrm{0}} {{lim}}\:\frac{\sqrt{{x}\:+\:\mathrm{4}}\:-\:\mathrm{2}}{{sinx}}\:=\:? \\ $$ Commented by EDWIN88 last updated on 29/Jul/21 $$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}\sqrt{\mathrm{1}+\frac{{x}}{\mathrm{4}}}−\mathrm{2}}{\mathrm{sin}\:{x}}\:= \\ $$$$\:\mathrm{2}×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+\frac{{x}}{\mathrm{4}}}−\mathrm{1}}{\mathrm{sin}\:{x}}\:=…

Prove-that-6-11-dx-x-2-x-3-2ln-3-2-2-2-3-

Question Number 17472 by Arnab Maiti last updated on 06/Jul/17 $$\mathrm{Prove}\:\mathrm{that}\:\int_{\mathrm{6}} ^{\mathrm{11}} \frac{\mathrm{dx}}{\:\sqrt{\left(\mathrm{x}−\mathrm{2}\right)\left(\mathrm{x}−\mathrm{3}\right)}}=\mathrm{2ln}\frac{\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}}{\mathrm{2}+\sqrt{\mathrm{3}}} \\ $$ Answered by sma3l2996 last updated on 06/Jul/17 $${I}=\int_{\mathrm{6}} ^{\mathrm{11}} \frac{{dx}}{\:\sqrt{{x}^{\mathrm{2}}…

Question-148541

Question Number 148541 by gloriousman last updated on 29/Jul/21 Answered by Olaf_Thorendsen last updated on 29/Jul/21 $$\mathrm{The}\:\mathrm{sequence}\:\mathrm{seems}\:\mathrm{to}\:\mathrm{be}\:\mathrm{a}\:\mathrm{sequence} \\ $$$$\mathrm{of}\:\mathrm{rational}\:\mathrm{numbers}\:\mathrm{and}\:\mathrm{the}\:\mathrm{limit} \\ $$$$\mathrm{seems}\:\mathrm{to}\:\mathrm{tend}\:\mathrm{to}\:\mathrm{0}. \\ $$$$\mathrm{We}\:\mathrm{try}\:\mathrm{a}\:\mathrm{sequence}\:\mathrm{like}\:: \\ $$$${u}_{{n}}…

Question-148540

Question Number 148540 by Jonathanwaweh last updated on 29/Jul/21 Answered by Olaf_Thorendsen last updated on 29/Jul/21 $$\mathrm{Formule}\:\mathrm{d}'\mathrm{Al}−\mathrm{Kashi}\:\left(\mathrm{generalisation}\right. \\ $$$$\mathrm{de}\:\mathrm{Pythagore}\:\mathrm{dans}\:\mathrm{un}\:\mathrm{triangle} \\ $$$$\left.\mathrm{quelconque}\right)\:: \\ $$$${c}^{\mathrm{2}} \:=\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}}…

Question-148543

Question Number 148543 by liberty last updated on 29/Jul/21 Answered by Rasheed.Sindhi last updated on 30/Jul/21 $${Let}\:\angle\mathrm{B}=\alpha\:,\:\angle\mathrm{C}=\beta\:, \\ $$$$\bigtriangleup\mathrm{ABC}: \\ $$$$\:\:\:\:\:\:\:\:\mathrm{AC}^{\mathrm{2}} =\mathrm{AB}^{\mathrm{2}} +\mathrm{BC}^{\mathrm{2}} −\mathrm{2}.\mathrm{AB}.\mathrm{BC}.\mathrm{cos}\:\alpha \\…