Menu Close

Author: Tinku Tara

prove-that-cosh-2x-2cosh-2-x-1-

Question Number 17280 by tawa tawa last updated on 03/Jul/17 $$\mathrm{prove}\:\mathrm{that}:\:\:\mathrm{cosh}\left(\mathrm{2x}\right)\:=\:\mathrm{2cosh}^{\mathrm{2}} \left(\mathrm{x}\right)\:−\:\mathrm{1} \\ $$ Commented by mrW1 last updated on 03/Jul/17 $$\mathrm{cosh}\:\left(\mathrm{2x}\right)=\frac{\mathrm{e}^{\mathrm{2x}} +\mathrm{e}^{−\mathrm{2x}} }{\mathrm{2}} \\…

Is-cosh-2-3x-1-2-1-cos-6x-

Question Number 17279 by tawa tawa last updated on 03/Jul/17 $$\mathrm{Is}\:\:\mathrm{cosh}^{\mathrm{2}} \left(\mathrm{3x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{1}\:+\:\mathrm{cos}\left(\mathrm{6x}\right)\right]\:\:?????? \\ $$ Commented by mrW1 last updated on 03/Jul/17 $$\mathrm{cosh}^{\mathrm{2}} \:\mathrm{3x}=\left(\frac{\mathrm{e}^{\mathrm{3x}} +\mathrm{e}^{−\mathrm{3x}} }{\mathrm{2}}\right)^{\mathrm{2}}…

lim-x-0-1-1-1-x-1-ln-x-

Question Number 82815 by M±th+et£s last updated on 24/Feb/20 $$\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}}\:\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{\frac{\mathrm{1}}{{ln}\left({x}\right)}} }=? \\ $$ Commented by mathmax by abdo last updated on 24/Feb/20 $${let}\:{f}\left({x}\right)=\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{−\frac{\mathrm{1}}{{lnx}}}…

1-2-1-3-1-9-9-1-8-2-1-9-

Question Number 148350 by Fikret last updated on 27/Jul/21 $$\frac{\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+….+\frac{\mathrm{1}}{\mathrm{9}}}{\frac{\mathrm{9}}{\mathrm{1}}+\frac{\mathrm{8}}{\mathrm{2}}+…+\frac{\mathrm{1}}{\mathrm{9}}}=? \\ $$ Commented by liberty last updated on 27/Jul/21 $$=\:\frac{\mathrm{4609}}{\mathrm{48610}} \\ $$ Terms of Service…

The-intersection-of-the-ABC-triangle-median-is-at-G-point-The-corner-of-the-BGC-is-90-If-the-AG-cut-length-is-12-cm-locate-the-BC-side-

Question Number 17273 by VEGAMIND last updated on 03/Jul/17 $$\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{intersection}}\:\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{ABC}}\:\boldsymbol{\mathrm{triangle}} \\ $$$$\boldsymbol{\mathrm{median}}\:\boldsymbol{\mathrm{is}}\:\boldsymbol{\mathrm{at}}\:\boldsymbol{\mathrm{G}}\:\boldsymbol{\mathrm{point}}.\:\boldsymbol{\mathrm{The}}\:\boldsymbol{\mathrm{corner}} \\ $$$$\boldsymbol{\mathrm{of}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{BGC}}\:\boldsymbol{\mathrm{is}}\:\mathrm{90}°.\:\boldsymbol{\mathrm{If}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{AG}}\:\boldsymbol{\mathrm{cut}}\: \\ $$$$\boldsymbol{\mathrm{length}}\:\boldsymbol{\mathrm{is}}\:\mathrm{12}\:\boldsymbol{\mathrm{cm}},\:\boldsymbol{\mathrm{locate}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{BC}}\:\boldsymbol{\mathrm{side}}. \\ $$ Commented by 1234Hello last updated on 03/Jul/17…

Determine-two-distinct-primes-p-and-q-such-that-i-p-q-1-p-q-1-p-q-2-P-All-primes-ii-p-q-1-p-q-1-p-q-2-p-q-2-P-All-primes-

Question Number 17272 by RasheedSoomro last updated on 03/Jul/17 $$\mathrm{Determine}\:\mathrm{two}\:\mathrm{distinct}\:\mathrm{primes}\:\:\:\mathrm{p}\:\:\:\mathrm{and}\:\:\:\mathrm{q}\: \\ $$$$\mathrm{such}\:\mathrm{that}: \\ $$$$\left(\mathrm{i}\right)\:\mathrm{p}+\mathrm{q}+\mathrm{1},\mathrm{p}+\mathrm{q}−\mathrm{1},\frac{\mathrm{p}+\mathrm{q}}{\mathrm{2}}\:\in\:\mathbb{P}\:\left(\mathrm{All}\:\mathrm{primes}\right)? \\ $$$$\left(\mathrm{ii}\right)\:\mathrm{p}+\mathrm{q}+\mathrm{1},\mathrm{p}+\mathrm{q}−\mathrm{1},\frac{\mathrm{p}+\mathrm{q}}{\mathrm{2}},\frac{\mathrm{p}−\mathrm{q}}{\mathrm{2}}\:\in\:\mathbb{P}\:\left(\mathrm{All}\:\mathrm{primes}\right)? \\ $$ Commented by prakash jain last updated on…

Question-82806

Question Number 82806 by ajfour last updated on 24/Feb/20 Commented by ajfour last updated on 24/Feb/20 $$\mathrm{If}\:\mathrm{released}\:\mathrm{as}\:\mathrm{shown}\:\mathrm{by}\:\mathrm{dashed} \\ $$$$\mathrm{lines},\:\mathrm{subsequently}\:\mathrm{find}\:\theta\left(\mathrm{x}\right). \\ $$$$\mathrm{Assume}\:\mathrm{length}\:\mathrm{of}\:\mathrm{rod}\:\mathrm{L}. \\ $$ Answered by…

Solve-the-equation-15-4-1-x-4-1-x-32-

Question Number 17271 by VEGAMIND last updated on 03/Jul/17 $$\boldsymbol{\mathrm{Solve}}\:\boldsymbol{\mathrm{the}}\:\boldsymbol{\mathrm{equation}}. \\ $$$$\sqrt{\frac{\mathrm{15}}{\mathrm{4}^{\mathrm{1}−\boldsymbol{\mathrm{x}}} }+\mathrm{4}^{\mathrm{1}−\boldsymbol{\mathrm{x}}} }=\mathrm{32}. \\ $$ Answered by RasheedSoomro last updated on 03/Jul/17 $$\sqrt{\frac{\mathrm{15}}{\mathrm{4}^{\mathrm{1}−\boldsymbol{\mathrm{x}}} }+\mathrm{4}^{\mathrm{1}−\boldsymbol{\mathrm{x}}}…