Menu Close

Author: Tinku Tara

ln-sin-x-dx-

Question Number 148128 by puissant last updated on 25/Jul/21 $$\int\mathrm{ln}\left(\mathrm{sin}\left(\mathrm{x}\right)\right)\mathrm{dx} \\ $$ Answered by Olaf_Thorendsen last updated on 25/Jul/21 $$\mathrm{Pas}\:\mathrm{de}\:\mathrm{formule}\:\mathrm{explicite}\:\mathrm{pour}\:\mathrm{ce}\:\mathrm{genre} \\ $$$$\mathrm{d}'\mathrm{integrales}\:\mathrm{mais}\:\mathrm{on}\:\mathrm{peut}\:\mathrm{quand}\:\mathrm{meme} \\ $$$$\mathrm{calculer}\:\mathrm{la}\:\mathrm{valeur}\:\mathrm{sur}\:\mathrm{un}\:\mathrm{intervalle}\:\mathrm{bien} \\…

Question-82593

Question Number 82593 by Power last updated on 22/Feb/20 Commented by mr W last updated on 23/Feb/20 $${t}=\sqrt{{x}}>\mathrm{0} \\ $$$${t}^{\mathrm{4}} −\mathrm{16}{t}−\mathrm{12}=\mathrm{0} \\ $$$$\left({t}^{\mathrm{2}} −\mathrm{2}{t}−\mathrm{2}\right)\left({t}^{\mathrm{2}} +\mathrm{2}{t}+\mathrm{6}\right)=\mathrm{0}…

A-closed-surface-is-defined-in-spherical-coordinates-by-3-lt-r-lt-5-0-1pi-lt-lt-0-3pi-1-2pi-lt-lt-1-6pi-Find-the-total-surface-area-

Question Number 82591 by Learner-123 last updated on 22/Feb/20 $${A}\:{closed}\:{surface}\:{is}\:{defined}\:{in}\:{spherical} \\ $$$${coordinates}\:{by}\:\mathrm{3}<{r}<\mathrm{5}\:,\:\mathrm{0}.\mathrm{1}\pi<\theta<\mathrm{0}.\mathrm{3}\pi, \\ $$$$\mathrm{1}.\mathrm{2}\pi<\phi<\mathrm{1}.\mathrm{6}\pi.\:\boldsymbol{{F}}{ind}\:{the}\:{total}\:{surface} \\ $$$${area}. \\ $$ Commented by Learner-123 last updated on 22/Feb/20…

Question-17053

Question Number 17053 by I’m a gamer last updated on 30/Jun/17 Answered by ajfour last updated on 30/Jun/17 $$\mathrm{L}=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{e}^{\sqrt{\mathrm{A}}} −\mathrm{e}^{\sqrt{\mathrm{B}}} }{\:\sqrt{\mathrm{ln}\:\left(\mathrm{1}+\left(\mathrm{1}−\mathrm{x}\right)\right.}} \\ $$$$\:\:=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{e}^{\sqrt{\mathrm{A}}}…

solve-x-3-3x-1-0-

Question Number 82582 by M±th+et£s last updated on 22/Feb/20 $${solve} \\ $$$${x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{1}=\mathrm{0} \\ $$ Commented by mr W last updated on 23/Feb/20 $${x}^{\mathrm{3}} +\mathrm{3}\left(−\mathrm{1}\right){x}+\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{0}…

Question-148113

Question Number 148113 by mathdanisur last updated on 25/Jul/21 Answered by liberty last updated on 25/Jul/21 $$\:{Hatched}\:{area}\:=\:\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{8}\right)^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{3}}\right)−\frac{\mathrm{1}}{\mathrm{2}}\pi\left(\mathrm{4}\right)^{\mathrm{2}} \\ $$$$=\mathrm{16}\sqrt{\mathrm{3}}−\mathrm{8}\pi \\ $$ Commented by mathdanisur…